3,863 research outputs found

    Multi-round Master-Worker Computing: a Repeated Game Approach

    Full text link
    We consider a computing system where a master processor assigns tasks for execution to worker processors through the Internet. We model the workers decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a mixed extension of a strategic game among workers. That is, we assume that workers are rational in a game-theoretic sense, and that they randomize their strategic choice. Workers are assigned multiple tasks in subsequent rounds. We model the system as an infinitely repeated game of the mixed extension of the strategic game. In each round, the master decides stochastically whether to accept the answer of the majority or verify the answers received, at some cost. Incentives and/or penalties are applied to workers accordingly. Under the above framework, we study the conditions in which the master can reliably obtain tasks results, exploiting that the repeated games model captures the effect of long-term interaction. That is, workers take into account that their behavior in one computation will have an effect on the behavior of other workers in the future. Indeed, should a worker be found to deviate from some agreed strategic choice, the remaining workers would change their own strategy to penalize the deviator. Hence, being rational, workers do not deviate. We identify analytically the parameter conditions to induce a desired worker behavior, and we evaluate experi- mentally the mechanisms derived from such conditions. We also compare the performance of our mechanisms with a previously known multi-round mechanism based on reinforcement learning.Comment: 21 pages, 3 figure

    Applying the dynamics of evolution to achieve reliability in master-worker computing

    Get PDF
    We consider Internet-based master-worker task computations, such as SETI@home, where a master process sends tasks, across the Internet, to worker processes; workers execute and report back some result. However, these workers are not trustworthy, and it might be at their best interest to report incorrect results. In such master-worker computations, the behavior and the best interest of the workers might change over time. We model such computations using evolutionary dynamics, and we study the conditions under which the master can reliably obtain task results. In particular, we develop and analyze an algorithmic mechanism based on reinforcement learning to provide workers with the necessary incentives to eventually become truthful. Our analysis identifies the conditions under which truthful behavior can be ensured and bounds the expected convergence time to that behavior. The analysis is complemented with illustrative simulations.This work is supported by the Cyprus Research Promotion Foundation grant TΠE/ΠΛHPO/0609(BE)/05, the National Science Foundation (CCF-0937829, CCF-1114930), Comunidad de Madrid grants S2009TIC-1692 and MODELICO-CM, Spanish PRODIEVO and RESINEE grants and MICINN grant EC2011-29688-C02-01, and National Natural Science Foundation of China grant 61020106002.Publicad

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems

    Achieving Reliability in Master-worker Computing via Evolutionary Dynamics

    Get PDF
    The proceeding at: 18th International Conference on Parallel and Distributed Computing, Euro-Par 2012), took place 2012, August 27-31, in Rhodes Island, Greece.This work considers Internet-based task computations in which a master process assigns tasks, over the Internet, to rational workers and collect their responses. The objective is for the master to obtain the correct task outcomes. For this purpose we formulate and study the dynamics of evolution of Internet-based master-worker computations through reinforcement learning.This work is supported by the Cyprus Research Promo-tion Foundation grant TΠE/ΠΛHPO/0609(BE)/05, NSF grants CCF-0937829, CCF-1114930, Comunidad de Madrid grant S2009TIC-1692, Spanish MOSAICO and RESINEE grants and MICINN grant TEC2011-29688-C02-01, and National Natural Science Foundation of China grant 61020106002.Publicad

    Achieving reliability and fairness in online task computing environments

    Get PDF
    Mención Internacional en el título de doctorWe consider online task computing environments such as volunteer computing platforms running on BOINC (e.g., SETI@home) and crowdsourcing platforms such as Amazon Mechanical Turk. We model the computations as an Internet-based task computing system under the masterworker paradigm. A master entity sends tasks across the Internet, to worker entities willing to perform a computational task. Workers execute the tasks, and report back the results, completing the computational round. Unfortunately, workers are untrustworthy and might report an incorrect result. Thus, the first research question we answer in this work is how to design a reliable masterworker task computing system. We capture the workers’ behavior through two realistic models: (1) the “error probability model” which assumes the presence of altruistic workers willing to provide correct results and the presence of troll workers aiming at providing random incorrect results. Both types of workers suffer from an error probability altering their intended response. (2) The “rationality model” which assumes the presence of altruistic workers, always reporting a correct result, the presence of malicious workers always reporting an incorrect result, and the presence of rational workers following a strategy that will maximize their utility (benefit). The rational workers can choose among two strategies: either be honest and report a correct result, or cheat and report an incorrect result. Our two modeling assumptions on the workers’ behavior are supported by an experimental evaluation we have performed on Amazon Mechanical Turk. Given the error probability model, we evaluate two reliability techniques: (1) “voting” and (2) “auditing” in terms of task assignments required and time invested for computing correctly a set of tasks with high probability. Considering the rationality model, we take an evolutionary game theoretic approach and we design mechanisms that eventually achieve a reliable computational platform where the master receives the correct task result with probability one and with minimal auditing cost. The designed mechanisms provide incentives to the rational workers, reinforcing their strategy to a correct behavior, while they are complemented by four reputation schemes that cope with malice. Finally, we also design a mechanism that deals with unresponsive workers by keeping a reputation related to the workers’ response rate. The designed mechanism selects the most reliable and active workers in each computational round. Simulations, among other, depict the trade-off between the master’s cost and the time the system needs to reach a state where the master always receives the correct task result. The second research question we answer in this work concerns the fair and efficient distribution of workers among the masters over multiple computational rounds. Masters with similar tasks are competing for the same set of workers at each computational round. Workers must be assigned to the masters in a fair manner; when the master values a worker’s contribution the most. We consider that a master might have a strategic behavior, declaring a dishonest valuation on a worker in each round, in an attempt to increase its benefit. This strategic behavior from the side of the masters might lead to unfair and inefficient assignments of workers. Applying renown auction mechanisms to solve the problem at hand can be infeasible since monetary payments are required on the side of the masters. Hence, we present an alternative mechanism for fair and efficient distribution of the workers in the presence of strategic masters, without the use of monetary incentives. We show analytically that our designed mechanism guarantees fairness, is socially efficient, and is truthful. Simulations favourably compare our designed mechanism with two benchmark auction mechanisms.This work has been supported by IMDEA Networks Institute and the Spanish Ministry of Education grant FPU2013-03792.Programa Oficial de Doctorado en Ingeniería MatemáticaPresidente: Alberto Tarable.- Secretario: José Antonio Cuesta Ruiz.- Vocal: Juan Julián Merelo Guervó

    Quid Pro Quo: A Mechanism for Fair Collaboration in Networked Systems

    Get PDF
    Collaboration may be understood as the execution of coordinated tasks (in the most general sense) by groups of users, who cooperate for achieving a common goal. Collaboration is a fundamental assumption and requirement for the correct operation of many communication systems. The main challenge when creating collaborative systems in a decentralized manner is dealing with the fact that users may behave in selfish ways, trying to obtain the benefits of the tasks but without participating in their execution. In this context, Game Theory has been instrumental to model collaborative systems and the task allocation problem, and to design mechanisms for optimal allocation of tasks. In this paper, we revise the classical assumptions and propose a new approach to this problem. First, we establish a system model based on heterogenous nodes (users, players), and propose a basic distributed mechanism so that, when a new task appears, it is assigned to the most suitable node. The classical technique for compensating a node that executes a task is the use of payments (which in most networks are hard or impossible to implement). Instead, we propose a distributed mechanism for the optimal allocation of tasks without payments. We prove this mechanism to be robust event in the presence of independent selfish or rationally limited players. Additionally, our model is based on very weak assumptions, which makes the proposed mechanisms susceptible to be implemented in networked systems (e.g., the Internet).Comment: 23 pages, 5 figures, 3 algorithm
    • …
    corecore