8,615 research outputs found

    From a Competition for Self-Driving Miniature Cars to a Standardized Experimental Platform: Concept, Models, Architecture, and Evaluation

    Full text link
    Context: Competitions for self-driving cars facilitated the development and research in the domain of autonomous vehicles towards potential solutions for the future mobility. Objective: Miniature vehicles can bridge the gap between simulation-based evaluations of algorithms relying on simplified models, and those time-consuming vehicle tests on real-scale proving grounds. Method: This article combines findings from a systematic literature review, an in-depth analysis of results and technical concepts from contestants in a competition for self-driving miniature cars, and experiences of participating in the 2013 competition for self-driving cars. Results: A simulation-based development platform for real-scale vehicles has been adapted to support the development of a self-driving miniature car. Furthermore, a standardized platform was designed and realized to enable research and experiments in the context of future mobility solutions. Conclusion: A clear separation between algorithm conceptualization and validation in a model-based simulation environment enabled efficient and riskless experiments and validation. The design of a reusable, low-cost, and energy-efficient hardware architecture utilizing a standardized software/hardware interface enables experiments, which would otherwise require resources like a large real-scale test track.Comment: 17 pages, 19 figues, 2 table

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Lower bounds for Arrangement-based Range-Free Localization in Sensor Networks

    Full text link
    Colander are location aware entities that collaborate to determine approximate location of mobile or static objects when beacons from an object are received by all colanders that are within its distance RR. This model, referred to as arrangement-based localization, does not require distance estimation between entities, which has been shown to be highly erroneous in practice. Colander are applicable in localization in sensor networks and tracking of mobile objects. A set S⊂R2S \subset {\mathbb R}^2 is an (R,ϵ)(R,\epsilon)-colander if by placing receivers at the points of SS, a wireless device with transmission radius RR can be localized to within a circle of radius ϵ\epsilon. We present tight upper and lower bounds on the size of (R,ϵ)(R,\epsilon)-colanders. We measure the expected size of colanders that will form (R,ϵ)(R, \epsilon)-colanders if they distributed uniformly over the plane

    Shawn: A new approach to simulating wireless sensor networks

    Full text link
    We consider the simulation of wireless sensor networks (WSN) using a new approach. We present Shawn, an open-source discrete-event simulator that has considerable differences to all other existing simulators. Shawn is very powerful in simulating large scale networks with an abstract point of view. It is, to the best of our knowledge, the first simulator to support generic high-level algorithms as well as distributed protocols on exactly the same underlying networks.Comment: 10 pages, 2 figures, 2 tables, Latex, to appear in Design, Analysis, and Simulation of Distributed Systems 200

    Algorithmic Aspects of Communication and Localization in Wireless Sensor Networks

    Get PDF
    • …
    corecore