250 research outputs found

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33

    Minimal dominating sets enumeration with FPT-delay parameterized by the degeneracy and maximum degree

    Full text link
    At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an nO(d)n^{O(d)}-delay algorithm listing all minimal transversals of an nn-vertex hypergraph of degeneracy dd. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether this XP-delay algorithm parameterized by dd could be made FPT-delay parameterized by dd and the maximum degree Δ\Delta, i.e., an algorithm with delay f(d,Δ)nO(1)f(d,\Delta)\cdot n^{O(1)} for some computable function ff. Moreover, as a first step toward answering that question, they note that the same delay is open for the intimately related problem of listing all minimal dominating sets in graphs. In this paper, we answer the latter question in the affirmative.Comment: 18 pages, 2 figure

    Polyhedra and algorithms for problems bridging notions of connectivity and independence

    Get PDF
    I denne avhandlinga interesserer vi oss for å finne delgrafer som svarer til utvalgte modeller for begrepene sammenheng og uavhengighet. I korthet betyr dette stabile (også kalt uavhengige) mengder med gitt kardinalitet, stabile (også kalt konfliktfrie) spenntrær og pardannelser (eller uavhengige kantmengder) som induserer en sammenhengende delgraf. Dette er kombinatoriske strukturer som kan generaliseres til ulike modeller for nettverksdesign innen telekommunikasjon og forsyningsvirksomhet, plassering av anlegg, fylogenetikk, og mange andre applikasjoner innen operasjonsanalyse og optimering. Vi argumenterer for at de valgte strukturene reiser interessante forskningsspørsmål, og vi bidrar med forbedret matematisk forståelse av selve strukturene, samt forbedrede algoritmer for å takle de tilhørende kombinatoriske optimeringsproblemene. Med det mener vi metoder for å identifisere en optimal struktur, forutsatt at elementene som danner dem (hjørner eller kanter i en gitt graf) er tildelt verdier. Forskninga vår omfatter ulike områder innenfor algoritmer, kombinatorikk og optimering. De fleste resultatene omhandler det å finne bedre beskrivelser av de geometriske strukturene (nemlig 0/1-polytoper) som representerer alle mulige løsninger for hvert av problemene. Slike forbedrede beskrivelser oversettes til lineære ulikheter i heltallsprogrammeringsmodeller, noe som igjen gir mer effektive beregningsresultater når man løser referanseinstanser av hvert problem. Vi påpeker gjentatte ganger betydninga av å dele kildekoden til implementasjonen av alle utviklede algoritmer og verktøy når det foreslås nye modeller og løsningsmetoder for heltallsprogrammering og kombinatorisk optimering. Kodearkivene våre inkluderer fullstendige implementasjoner, utformet med effektivitet og modulær design i tankene, og fremmer dermed gjenbruk, videre forskning og nye anvendelser innen forskning og utvikling.We are interested in finding subgraphs that capture selected models of connectivity and independence. In short: fixed cardinality stable (or independent) sets, stable (or conflict-free) spanning trees, and matchings (or independent edge sets) inducing a connected subgraph. These are combinatorial structures that can be generalized to a number of models across network design in telecommunication and utilities, facility location, phylogenetics, among many other application domains of operations research and optimization. We argue that the selected structures raise appealing research questions, and seek to contribute with improved mathematical understanding of the structures themselves, as well as improved algorithms to face the corresponding combinatorial optimization problems. That is, methods to identify an optimal structure, assuming the elements that form them (vertices or edges in a given graph) have a weight. Our research spans different lines within algorithmics, combinatorics and optimization. Most of the results concern finding better descriptions of the geometric structures (namely, 0/1-polytopes) that represent all feasible solutions to each of the problems. Such improved descriptions translate to linear inequalities in integer programming formulations which, in turn, provide stronger computational results when solving benchmark instances of each problem. We repeatedly remark the importance of sharing an open-source implementation of all algorithms and tools developed when proposing new models and solution methods in integer programming and combinatorial optimization. Our code repositories include full implementations, crafted with efficiency and modular design in mind, thus fostering reuse, further research and new applications in research and development.Doktorgradsavhandlin

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF
    corecore