35 research outputs found

    High Performance Computing Based Methods for Simulation and Optimisation of Flow Problems

    Get PDF
    The thesis is concerned with the study of methods in high-performance computing for simulation and optimisation of flow problems that occur in the framework of microflows. We consider the adequate use of techniques in parallel computing by means of finite element based solvers for partial differential equations and by means of sensitivity- and adjoint-based optimisation methods. The main focus is on three-dimensional, low Reynolds number flows described by the instationary Navier-Stokes equations

    The Effects of Coupling Adaptive Time-Stepping and Adjoint-State Methods for Optimal Control Problems

    Get PDF
    This thesis presents the implications of using adaptive time-stepping schemes with the adjoint-state method, a widely used algorithm for computing derivatives in optimal-control problems. Though we gain control over the accuracy of the timestepping scheme, the forward and adjoint time grids become mismatched. Despite this fact, I claim using adaptive time-stepping for optimal control problems is advantageous for two reasons. First, taking variable time-steps potentially reduces the computational cost and improves accuracy of the forward and adjoint equations' numerical solution. Second, by appropriately adjusting the tolerances of the timestepping scheme, convergence of the optimal control problem can be theoretically guaranteed via inexact Newton theory. I present proofs and computational results to support this claim

    A DISTRIBUTED APPROACH TO PRIVACY ON THE CLOUD

    Get PDF
    The increasing adoption of Cloud-based data processing and storage poses a number of privacy issues. Users wish to preserve full control over their sensitive data and cannot accept it to be fully accessible to an external storage provider. Previous research in this area was mostly addressed at techniques to protect data stored on untrusted database servers; however, I argue that the Cloud architecture presents a number of specific problems and issues. This dissertation contains a detailed analysis of open issues. To handle them, I present a novel approach where confidential data is stored in a highly distributed partitioned database, partly located on the Cloud and partly on the clients. In my approach, data can be either private or shared; the latter is shared in a secure manner by means of simple grant-and-revoke permissions. I have developed a proof-of-concept implementation using an in\u2011memory RDBMS with row-level data encryption in order to achieve fine-grained data access control. This type of approach is rarely adopted in conventional outsourced RDBMSs because it requires several complex steps. Benchmarks of my proof-of-concept implementation show that my approach overcomes most of the problems

    Tails in the cloud: a survey and taxonomy of straggler management within large-scale cloud data centres

    Get PDF
    Cloud computing systems are splitting compute- and data-intensive jobs into smaller tasks to execute them in a parallel manner using clusters to improve execution time. However, such systems at increasing scale are exposed to stragglers, whereby abnormally slow running tasks executing within a job substantially affect job performance completion. Such stragglers are a direct threat towards attaining fast execution of data-intensive jobs within cloud computing. Researchers have proposed an assortment of different mechanisms, frameworks, and management techniques to detect and mitigate stragglers both proactively and reactively. In this paper, we present a comprehensive review of straggler management techniques within large-scale cloud data centres. We provide a detailed taxonomy of straggler causes, as well as proposed management and mitigation techniques based on straggler characteristics and properties. From this systematic review, we outline several outstanding challenges and potential directions of possible future work for straggler research

    Mesoscale fluid simulation with the Lattice Boltzmann method

    Get PDF
    PhDThis thesis describes investigations of several complex fluid effects., including hydrodynamic spinodal decomposition, viscous instability. and self-assembly of a cubic surfactant phase, by simulating them with a lattice Boltzmann computational model. The introduction describes what is meant by the term "complex fluid", and why such fluids are both important and difficult to understand. A key feature of complex fluids is that their behaviour spans length and time scales. The lattice Boltzmann method is presented as a modelling technique which sits at a "mesoscale" level intermediate between coarse-grained and fine-grained detail, and which is therefore ideal for modelling certain classes of complex fluids. The following chapters describe simulations which have been performed using this technique, in two and three dimensions. Chapter 2 presents an investigation into the separation of a mixture of two fluids. This process is found to involve several physical mechanisms at different stages. The simulated behaviour is found to be in good agreement with existing theory, and a curious effect, due to multiple competing mechanisms, is observed, in agreement with experiments and other simulations. Chapter 3 describes an improvement to lattice Boltzmann models of Hele-Shaw flow, along with simulations which quantitatively demonstrate improvements in both accuracy and numerical stability. The Saffman-Taylor hydrodynamic instability is demonstrated using this model. Chapter 4 contains the details and results of the TeraGyroid experiment, which involved extremely large-scale simulations to investigate the dynamical behaviour of a self-assembling structure. The first finite- size-effect- free dynamical simulations of such a system are presented. It is found that several different mechanisms are responsible for the assembly; the existence of chiral domains is demonstrated, along with an examination of domain growth during self-assembly. Appendix A describes some aspects of the implementation of the lattice Boltzmann codes used in this thesis; appendix B describes some of the Grid computing techniques which were necessary for the simulations of chapter 4. Chapter 5 summarises the work, and makes suggestions for further research and improvement.Huntsman Corporation Queen Mary University Schlumberger Cambridge Researc

    Concurrency Platforms for Real-Time and Cyber-Physical Systems

    Get PDF
    Parallel processing is an important way to satisfy the increasingly demanding computational needs of modern real-time and cyber-physical systems, but existing parallel computing technologies primarily emphasize high-throughput and average-case performance metrics, which are largely unsuitable for direct application to real-time, safety-critical contexts. This work contrasts two concurrency platforms designed to achieve predictable worst case parallel performance for soft real-time workloads with millisecond periods and higher. One of these is then the basis for the CyberMech platform, which enables parallel real-time computing for a novel yet representative application called Real-Time Hybrid Simulation (RTHS). RTHS combines demanding parallel real-time computation with real-time simulation and control in an earthquake engineering laboratory environment, and results concerning RTHS characterize a reasonably comprehensive survey of parallel real-time computing in the static context, where the size, shape, timing constraints, and computational requirements of workloads are fixed prior to system runtime. Collectively, these contributions constitute the first published implementations and evaluations of general-purpose concurrency platforms for real-time and cyber-physical systems, explore two fundamentally different design spaces for such systems, and successfully demonstrate the utility and tradeoffs of parallel computing for statically determined real-time and cyber-physical systems

    An optimization framework for adaptive higher-order discretizations of partial differential equations on anisotropic simplex meshes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 271-281).Improving the autonomy, efficiency, and reliability of partial differential equation (PDE) solvers has become increasingly important as powerful computers enable engineers to address modern computational challenges that require rapid characterization of the input-output relationship of complex PDE governed processes. This thesis presents work toward development of a versatile PDE solver that accurately predicts engineering quantities of interest to user-prescribed accuracy in a fully automated manner. We develop an anisotropic adaptation framework that works with any localizable error estimate, handles any discretization order, permits arbitrarily oriented anisotropic elements, robustly treats irregular features, and inherits the versatility of the underlying discretization and error estimate. Given a discretization and any localizable error estimate, the framework iterates toward a mesh that minimizes the error for a given number of degrees of freedom by considering a continuous optimization problem of the Riemannian metric field. The adaptation procedure consists of three key steps: sampling of the anisotropic error behavior using element-wise local solves; synthesis of the local errors to construct a surrogate error model based on an affine-invariant metric interpolation framework; and optimization of the surrogate model to drive the mesh toward optimality. The combination of the framework with a discontinuous Galerkin discretization and an a posteriori output error estimate results in a versatile PDE solver for reliable output prediction. The versatility and effectiveness of the adaptive framework are demonstrated in a number of applications. First, the optimality of the method is verified against anisotropic polynomial approximation theory in the context of L2 projection. Second, the behavior of the method is studied in the context of output-based adaptation using advection-diffusion problems with manufactured primal and dual solutions. Third, the framework is applied to the steady-state Euler and Reynolds-averaged Navier-Stokes equations. The results highlight the importance of adaptation for high-order discretizations and demonstrate the robustness and effectiveness of the proposed method in solving complex aerodynamic flows exhibiting a wide range of scales. Fourth, fully-unstructured space-time adaptivity is realized, and its competitiveness is assessed for wave propagation problems. Finally, the framework is applied to enable spatial error control of parametrized PDEs, producing universal optimal meshes applicable for a wide range of parameters.by Masayuki Yano.Ph.D

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    University of Windsor Graduate Calendar 2022 Spring

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1024/thumbnail.jp
    corecore