6 research outputs found

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Collected Papers (on various scientific topics), Volume XIII

    Get PDF
    This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.‬‬‬‬‬‬‬

    Convex reconstruction from structured measurements

    Get PDF
    Convex signal reconstruction is the art of solving ill-posed inverse problems via convex optimization. It is applicable to a great number of problems from engineering, signal analysis, quantum mechanics and many more. The most prominent example is compressed sensing, where one aims at reconstructing sparse vectors from an under-determined set of linear measurements. In many cases, one can prove rigorous performance guarantees for these convex algorithms. The combination of practical importance and theoretical tractability has directed a significant amount of attention to this young field of applied mathematics. However, rigorous proofs are usually only available for certain "generic cases"---for instance situations, where all measurements are represented by random Gaussian vectors. The focus of this thesis is to overcome this drawback by devising mathematical proof techniques can be applied to more "structured" measurements. Here, structure can have various meanings. E.g. it could refer to the type of measurements that occur in a given concrete application. Or, more abstractly, structure in the sense that a measurement ensemble is small and exhibits rich geometric features. The main focus of this thesis is phase retrieval: The problem of inferring phase information from amplitude measurements. This task is ubiquitous in, for instance, in crystallography, astronomy and diffraction imaging. Throughout this project, a series of increasingly better convex reconstruction guarantees have been established. On the one hand, we improved results for certain measurement models that mimic typical experimental setups in diffraction imaging. On the other hand, we identified spherical t-designs as a general purpose tool for the derandomization of data recovery schemes. Loosely speaking, a t-design is a finite configuration of vectors that is "evenly distributed" in the sense that it reproduces the first 2t moments of the uniform measure. Such configurations have been studied, for instance, in algebraic combinatorics, coding theory, and quantum information. We have shown that already spherical 4-designs allow for proving close-to-optimal convex reconstruction guarantees for phase retrieval. The success of this program depends on explicit constructions of spherical t-designs. In this regard, we have studied the design properties of stabilizer states. These are configurations of vectors that feature prominently in quantum information theory. Mathematically, they can be related to objects in discrete symplectic vector spaces---a structure we use heavily. We have shown that these vectors form a spherical 3-design and are, in some sense, close to a spherical 4-design. Putting these efforts together, we establish tight bounds on phase retrieval from stabilizer measurements. While working on the derandomization of phase retrieval, I obtained a number of results on other convex signal reconstruction problems. These include compressed sensing from anisotropic measurements, non-negative compressed sensing in the presence of noise and identifying improved convex regularizers for low rank matrix reconstruction. Going even further, the mathematical methods I used to tackle ill-posed inverse problems can be applied to a plethora of problems from quantum information theory. In particular, the causal structure behind Bell inequalities, new ways to compare experiments to fault-tolerance thresholds in quantum error correction, a novel benchmark for quantum state tomography via Bayesian estimation, and the task of distinguishing quantum states

    The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O

    Get PDF
    Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology
    corecore