5 research outputs found

    A Hybrid Scheme based on Alternative Scalar Leader Election (HS-ASLE) for Redundant Data Minimization in Multi-event Occurrence Scenario for WMSNs

    Get PDF
    The current paper reports a hybrid approach namely “Hybrid Scheme based on Alternative Scalar Leader Election (HS-ASLE)” for camera sensor actuation in multi-event occurrence scenario. In the proposed approach, the whole monitored zone gets segregated into multiple virtual sub-compartments and in each of the sub-compartments, one and three scalar leaders are elected alternatively that behave as the representatives of scalars to report event information. During the event occurrence, the event information gets trapped through the scalar leaders in lieu of scalars and the leaders convey the event occurrence information to the respective camera sensors. Pervasive experiment and observation have been ordained to mark the impact of varying the number of deployed scalar sensors and camera sensors individually on various performance parameters in multi-event occurrence ambience. Further, the numerical outcomes attained in terms of number of cameras actuated, coverage ratio, redundance ratio and energy expenditure for camera activation proclaim the effectiveness of our proposed HS-ASLE over the other two existing approaches in literature. Moreover, it is marked that our proposed approach attains maximal event region coverage with least camera activation, least redundant data transmission and lowest energy expenditure for camera sensor actuation as compared to two other approaches, which justify the precedence of our proposition over the other existing approaches

    Machine Learning Based Data Reduction in WSN for Smart Agriculture

    Get PDF
    International audienceNowadays, the agriculture domain faces a lot of challenges for a better usage of its natural resources. For this purpose, and for the increasing danger of climate change, there is a need to locally monitor meteorological data and soil conditions to help make quicker and more adapted decision for the culture. Wireless Sensor Networks (WSN) can serve as a monitoring system for those types of features. However, WSN suffer from the limited energy resources of the motes which shorten the lifetime of the overall network. Every mote periodically captures the monitored feature and sends the data to the sink for further analysis depending on a certain sampling rate. This process of sending big amount of data causes a high energy consumption of the sensor node and an important bandwidth usage on the network. In this paper, a Machine Learning based Data Reduction Algorithm (MLDR) is introduced. MLDR focuses on environmental data for the benefits of agriculture. MLDR is a data reduction approach which reduces the amount of transmitted data to the sink by adding some machine learning techniques at the sensor node level by keeping data availability and accuracy at the sink. This data reduction helps reduce the energy consumption and the bandwidth usage and it enhances the use of the medium while maintaining the accuracy of the information. This approach is validated through simulations on MATLAB using real temperature data-sets from Weather-Underground sensor network. Results show that the amount of sent data is reduced by more than 70% while maintaining a very good accuracy with a variance that did not surpass 2 degrees

    Dynamic Multi-hop Routing Protocol Based on Fuzzy-Firefly Algorithm for Data Similarity Aware Node Clustering in WSNs

    Get PDF
    In multi-hop routing, cluster heads close to the base station functionaries as intermediate nodes for father cluster heads to relay the data packet from regular nodes to base station. The cluster heads that act as relays will experience energy depletion quicker that causes hot spot problem. This paper proposes a dynamic multihop routing algorithm named Data Similarity Aware for Dynamic Multi-hop Routing Protocol (DSA-DMRP) to improve the network lifetime, and satisfy the requirement of multi-hop routing protocol for the dynamic node clustering that consider the data similarity of adjacent nodes. The DSA-DMRP uses fuzzy aggregation technique to measure their data similarity degree in order to partition the network into unequal size clusters. In this mechanism, each node can recognize and note its similar neighbor nodes. Next, K-hop Clustering Algorithm (KHOPCA) that is modified by adding a priority factor that considers residual energy and distance to the base station is used to select cluster heads and create the best routes for intra-cluster and inter-cluster transmission. The DSA-DMRP was compared against the KHOPCA to justify the performance. Simulation results show that, the DSA DMRP can improve the network lifetime longer than the KHOPCA and can satisfy the requirement of the dynamic multi-hop routing protocol

    K-Predictions Based Data Reduction Approach in WSN for Smart Agriculture

    Get PDF
    International audienceNowadays, climate change is one of the numerous factors affecting the agricultural sector. Optimising the usage of natural resources is one of the challenges this sector faces. For this reason, it could be necessary to locally monitor weather data and soil conditions to make faster and better decisions locally adapted to the crop. Wireless sensor networks (WSNs) can serve as a monitoring system for these types of parameters. However, in WSNs, sensor nodes suffer from limited energy resources. The process of sending a large amount of data from the nodes to the sink results in high energy consumption at the sensor node and significant use of network bandwidth, which reduces the lifetime of the overall network and increases the number of costly interference. Data reduction is one of the solutions for this kind of challenges. In this paper, data correlation is investigated and combined with a data prediction technique in order to avoid sending data that could be retrieved mathematically in the objective to reduce the energy consumed by sensor nodes and the bandwidth occupation. This data reduction technique relies on the observation of the variation of every monitored parameter as well as the degree of correlation between different parameters. This approach is validated through simulations on MATLAB using real meteorological data-sets from Weather-Underground sensor network. The results show the validity of our approach which reduces the amount of data by a percentage up to 88% while maintaining the accuracy of the information having a standard deviation of 2 degrees for the temperature and 7% for the humidity

    Algorithm for data similarity measurements to reduce data redundancy in wireless sensor networks.

    No full text
    International audienceExtending the lifetime of wireless sensor networks remains the most challenging and demand- ing requirement that impedes large-scale deploy- ments. The basic operation in WSNs is the systematic gathering and transmission of sensed data to a base station for further processing. During data gathering, the amount of data can be large sometimes, due to re- dundant data combined from different sensing nodes in the neighborhood. Thus the data gathered need to be processed before being transmitted, in order to detect and remove redundancy, which can impact the communication traffic and energy consumption of the network in a negative way. In this paper, we propose an algorithm to measure similarity between the data collected toward the base station(relative to a specific event monitoring), so that an aggregator sensor sends a minimum amount of information to the base station in a way that the latter can deduce the source information of sensing neighbors nodes. Further, our experimental results demonstrate that the communication traffic and the number of bits transmitted can be minimized while preserving ac- curacy on the base station estimations
    corecore