16,082 research outputs found

    Spectral Approximation for Quasiperiodic Jacobi Operators

    Full text link
    Quasiperiodic Jacobi operators arise as mathematical models of quasicrystals and in more general studies of structures exhibiting aperiodic order. The spectra of these self-adjoint operators can be quite exotic, such as Cantor sets, and their fine properties yield insight into associated dynamical systems. Quasiperiodic operators can be approximated by periodic ones, the spectra of which can be computed via two finite dimensional eigenvalue problems. Since long periods are necessary to get detailed approximations, both computational efficiency and numerical accuracy become a concern. We describe a simple method for numerically computing the spectrum of a period-KK Jacobi operator in O(K2)O(K^2) operations, and use it to investigate the spectra of Schr\"odinger operators with Fibonacci, period doubling, and Thue-Morse potentials

    Fast and accurate con-eigenvalue algorithm for optimal rational approximations

    Full text link
    The need to compute small con-eigenvalues and the associated con-eigenvectors of positive-definite Cauchy matrices naturally arises when constructing rational approximations with a (near) optimally small LL^{\infty} error. Specifically, given a rational function with nn poles in the unit disk, a rational approximation with mnm\ll n poles in the unit disk may be obtained from the mmth con-eigenvector of an n×nn\times n Cauchy matrix, where the associated con-eigenvalue λm>0\lambda_{m}>0 gives the approximation error in the LL^{\infty} norm. Unfortunately, standard algorithms do not accurately compute small con-eigenvalues (and the associated con-eigenvectors) and, in particular, yield few or no correct digits for con-eigenvalues smaller than the machine roundoff. We develop a fast and accurate algorithm for computing con-eigenvalues and con-eigenvectors of positive-definite Cauchy matrices, yielding even the tiniest con-eigenvalues with high relative accuracy. The algorithm computes the mmth con-eigenvalue in O(m2n)\mathcal{O}(m^{2}n) operations and, since the con-eigenvalues of positive-definite Cauchy matrices decay exponentially fast, we obtain (near) optimal rational approximations in O(n(logδ1)2)\mathcal{O}(n(\log\delta^{-1})^{2}) operations, where δ\delta is the approximation error in the LL^{\infty} norm. We derive error bounds demonstrating high relative accuracy of the computed con-eigenvalues and the high accuracy of the unit con-eigenvectors. We also provide examples of using the algorithm to compute (near) optimal rational approximations of functions with singularities and sharp transitions, where approximation errors close to machine precision are obtained. Finally, we present numerical tests on random (complex-valued) Cauchy matrices to show that the algorithm computes all the con-eigenvalues and con-eigenvectors with nearly full precision

    Development of a multigrid finite difference solver for benchmark permeability analysis

    Get PDF
    A finite difference solver, dedicated to flow around fibre architectures is currently being developed. The complexity of the internal geometry of textile reinforcements results in extreme computation times, or inaccurate solutions. A compromise between the two is found by implementing a multigrid algorithm and analytical solutions at the coarsest level of discretisation. Hence, the computational load of the solver is drastically reduced.\ud This paper discusses the main features of the 3D multigrid algorithm implemented as well as the implementation of the analytical solution in the finite difference scheme. The first tests of the solver on the permeability benchmark lithographic reference geometry are discussed.\ud Several tests were performed to assess the accuracy and the reduction in calculation time. The methods prove to be both accurate and efficient. However, the code is developed in Matlab© and hence is relatively slow. A C++ code is currently under development to achieve acceptable calculation times
    corecore