11,883 research outputs found

    Fast Algebraic Attacks and Decomposition of Symmetric Boolean Functions

    Full text link
    Algebraic and fast algebraic attacks are power tools to analyze stream ciphers. A class of symmetric Boolean functions with maximum algebraic immunity were found vulnerable to fast algebraic attacks at EUROCRYPT'06. Recently, the notion of AAR (algebraic attack resistant) functions was introduced as a unified measure of protection against both classical algebraic and fast algebraic attacks. In this correspondence, we first give a decomposition of symmetric Boolean functions, then we show that almost all symmetric Boolean functions, including these functions with good algebraic immunity, behave badly against fast algebraic attacks, and we also prove that no symmetric Boolean functions are AAR functions. Besides, we improve the relations between algebraic degree and algebraic immunity of symmetric Boolean functions.Comment: 13 pages, submitted to IEEE Transactions on Information Theor

    The complexity of Boolean functions from cryptographic viewpoint

    Get PDF
    Cryptographic Boolean functions must be complex to satisfy Shannon\u27s principle of confusion. But the cryptographic viewpoint on complexity is not the same as in circuit complexity. The two main criteria evaluating the cryptographic complexity of Boolean functions on F2nF_2^n are the nonlinearity (and more generally the rr-th order nonlinearity, for every positive r<nr< n) and the algebraic degree. Two other criteria have also been considered: the algebraic thickness and the non-normality. After recalling the definitions of these criteria and why, asymptotically, almost all Boolean functions are deeply non-normal and have high algebraic degrees, high (rr-th order) nonlinearities and high algebraic thicknesses, we study the relationship between the rr-th order nonlinearity and a recent cryptographic criterion called the algebraic immunity. This relationship strengthens the reasons why the algebraic immunity can be considered as a further cryptographic complexity criterion

    Mathematical methods in solutions of the problems from the Third International Students' Olympiad in Cryptography

    Get PDF
    The mathematical problems and their solutions of the Third International Students' Olympiad in Cryptography NSUCRYPTO'2016 are presented. We consider mathematical problems related to the construction of algebraic immune vectorial Boolean functions and big Fermat numbers, problems about secrete sharing schemes and pseudorandom binary sequences, biometric cryptosystems and the blockchain technology, etc. Two open problems in mathematical cryptography are also discussed and a solution for one of them proposed by a participant during the Olympiad is described. It was the first time in the Olympiad history
    corecore