5 research outputs found

    Minimum-weight codewords of the Hermitian codes are supported on complete intersections

    Full text link
    Let H\mathcal{H} be the Hermitian curve defined over a finite field Fq2\mathbb{F}_{q^2}. In this paper we complete the geometrical characterization of the supports of the minimum-weight codewords of the algebraic-geometry codes over H\mathcal{H}, started in [1]: if dd is the distance of the code, the supports are all the sets of dd distinct Fq2\mathbb{F}_{q^2}-points on H\mathcal{H} complete intersection of two curves defined by polynomials with prescribed initial monomials w.r.t. \texttt{DegRevLex}. For most Hermitian codes, and especially for all those with distance d≥q2−qd\geq q^2-q studied in [1], one of the two curves is always the Hermitian curve H\mathcal{H} itself, while if d<qd<q the supports are complete intersection of two curves none of which can be H\mathcal{H}. Finally, for some special codes among those with intermediate distance between qq and q2−qq^2-q, both possibilities occur. We provide simple and explicit numerical criteria that allow to decide for each code what kind of supports its minimum-weight codewords have and to obtain a parametric description of the family (or the two families) of the supports. [1] C. Marcolla and M. Roggero, Hermitian codes and complete intersections, arXiv preprint arXiv:1510.03670 (2015)

    Algebraic approaches to distributed compression and network error correction

    Get PDF
    Algebraic codes have been studied for decades and have extensive applications in communication and storage systems. In this dissertation, we propose several novel algebraic approaches for distributed compression and network error protection problems. In the first part of this dissertation we propose the usage of Reed-Solomon codes for compression of two nonbinary sources. Reed-Solomon codes are easy to design and offer natural rate adaptivity. We compare their performance with multistage LDPC codes and show that algebraic soft-decision decoding of Reed-Solomon codes can be used effectively under certain correlation structures. As part of this work we have proposed a method that adapts list decoding for the problem of syndrome decoding. This in turn allows us to arrive at improved methods for the compression of multicast network coding vectors. When more than two correlated sources are present, we consider a correlation model given by a system of linear equations. We propose a transformation of correlation model and a way to determine proper decoding schedules. Our scheme allows us to exploit more correlations than those in the previous work and the simulation results confirm its better performance. In the second part of this dissertation we study the network protection problem in the presence of adversarial errors and failures. In particular, we consider the usage of network coding for the problem of simultaneous protection of multiple unicast connections, under certain restrictions on the network topology. The proposed scheme allows the sharing of protection resources among multiple unicast connections. Simulations show that our proposed scheme saves network resources by 4%-15% compared to the protection scheme based on simple repetition codes, especially when the number of primary paths is large or the costs for establishing primary paths are high
    corecore