7 research outputs found

    Multilevel spectral coarsening for graph Laplacian problems with application to reservoir simulation

    Get PDF
    We extend previously developed two-level coarsening procedures for graph Laplacian problems written in a mixed saddle point form to the fully recursive multilevel case. The resulting hierarchy of discretizations gives rise to a hierarchy of upscaled models, in the sense that they provide approximation in the natural norms (in the mixed setting). This property enables us to utilize them in three applications: (i) as an accurate reduced model, (ii) as a tool in multilevel Monte Carlo simulations (in application to finite volume discretizations), and (iii) for providing a sequence of nonlinear operators in FAS (full approximation scheme) for solving nonlinear pressure equations discretized by the conservative two-point flux approximation. We illustrate the potential of the proposed multilevel technique in all three applications on a number of popular benchmark problems used in reservoir simulation

    Nonlinear multigrid based on local spectral coarsening for heterogeneous diffusion problems

    Full text link
    This work develops a nonlinear multigrid method for diffusion problems discretized by cell-centered finite volume methods on general unstructured grids. The multigrid hierarchy is constructed algebraically using aggregation of degrees of freedom and spectral decomposition of reference linear operators associated with the aggregates. For rapid convergence, it is important that the resulting coarse spaces have good approximation properties. In our approach, the approximation quality can be directly improved by including more spectral degrees of freedom in the coarsening process. Further, by exploiting local coarsening and a piecewise-constant approximation when evaluating the nonlinear component, the coarse level problems are assembled and solved without ever re-visiting the fine level, an essential element for multigrid algorithms to achieve optimal scalability. Numerical examples comparing relative performance of the proposed nonlinear multigrid solvers with standard single-level approaches -- Picard's and Newton's methods -- are presented. Results show that the proposed solver consistently outperforms the single-level methods, both in efficiency and robustness

    Local Fourier analysis of multigrid for hybridized and embedded discontinuous Galerkin methods

    Full text link
    In this paper we present a geometric multigrid method with Jacobi and Vanka relaxation for hybridized and embedded discontinuous Galerkin discretizations of the Laplacian. We present a local Fourier analysis (LFA) of the two-grid error-propagation operator and show that the multigrid method applied to an embedded discontinuous Galerkin (EDG) discretization is almost as efficient as when applied to a continuous Galerkin discretization. We furthermore show that multigrid applied to an EDG discretization outperforms multigrid applied to a hybridized discontinuous Galerkin (HDG) discretization. Numerical examples verify our LFA predictions
    corecore