2,248 research outputs found

    Convolution, Separation and Concurrency

    Full text link
    A notion of convolution is presented in the context of formal power series together with lifting constructions characterising algebras of such series, which usually are quantales. A number of examples underpin the universality of these constructions, the most prominent ones being separation logics, where convolution is separating conjunction in an assertion quantale; interval logics, where convolution is the chop operation; and stream interval functions, where convolution is used for analysing the trajectories of dynamical or real-time systems. A Hoare logic is constructed in a generic fashion on the power series quantale, which applies to each of these examples. In many cases, commutative notions of convolution have natural interpretations as concurrency operations.Comment: 39 page

    Algebraic proof theory for LE-logics

    Full text link
    In this paper we extend the research programme in algebraic proof theory from axiomatic extensions of the full Lambek calculus to logics algebraically captured by certain varieties of normal lattice expansions (normal LE-logics). Specifically, we generalise the residuated frames in [16] to arbitrary signatures of normal lattice expansions (LE). Such a generalization provides a valuable tool for proving important properties of LE-logics in full uniformity. We prove semantic cut elimination for the display calculi D.LE associated with the basic normal LE-logics and their axiomatic extensions with analytic inductive axioms. We also prove the finite model property (FMP) for each such calculus D.LE, as well as for its extensions with analytic structural rules satisfying certain additional properties

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    Process algebra for performance evaluation

    Get PDF
    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server architectures, networks – can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions
    • …
    corecore