565,577 research outputs found

    Release of proteins via ion exchange from albumin-heparin microspheres

    Get PDF
    Albumin-heparin and albumin microspheres were prepared as ion exchange gels for the controlled release of positively charged polypeptides and proteins. The adsorption isotherms of chicken egg and human lysozyme, as model proteins, on microspheres were obtained. An adsorption isotherm of chicken egg lysozyme on albumin-heparin microspheres was linear until saturation was abruptly reached,\ud \ud The adsorption isotherms of human lysozyme at low and high ionic strength were typical of adsorption isotherms of proteins on ion exchange gels. The adsorption of human lysozyme on albumin-heparin and albumin microspheres fit the Freundlich equation suggesting heterogeneous binding sites. This was consistent with the proposed multivalent, electrostatic interactions between human lysozyme and negatively charged microspheres. Scatchard plots of the adsorption processes of human lysozyme on albumin-heparin and albumin microspheres suggested negative cooperativity, while positive cooperativity was observed for chicken egg lysozyme adsorption on albumin-heparin microspheres.\ud \ud Human lysozyme loading of albumin-heparin microspheres was 3 times higher than with albumin microspheres, with long term release occurring via an ion exchange mechanism. Apparent diffusion coefficients of 2.1 × 10-1 and 3.9 × 10-11cm2/sec were obtained for the release of human lysozyme from albumin-heparin and albumin microspheres, respectively. The release was found to be independent of diffusion, since the rate determining step was likely an adsorption/desorption processes. An apparent diffusion coefficient of 4.1 × 10-12 cm2/sec was determined for the release of chicken egg lysozyme from albumin-heparin microspheres.\ud \ud Low release of the lysozymes from albumin-heparin microspheres was observed in deionized water, consistent with the proposed ion exchange release mechanism. Overall, albumin-heparin microspheres demonstrated enhanced ion exchange characteristics over albumin microspheres

    PENGARUH PEMBERIAN SUPLEMENTASI SUPEROXIDE DISMUTASE (SOD) TERHADAP KADAR ALBUMIN SERUM PADA LANSIA

    Get PDF
    Background: Levels of serum albumin can be used as a predictor of morbidity and mortality in the elderly. Reduced serum albumin concentration can be caused by oxidative modification due to aging or insufficient protein intake. SOD as an enzymatic antioxidant might prevent oxidative stress so that albumin modification process can be inhibited. SOD supplementation was expected to increase serum albumin levels. Aim: Analyze the effect of SOD supplementation on elderly serum albumin level. Methods: This was a true experimental study with pre and post test control group design.. The study began with 31 elderly, resides in the “Pucang Gading Social Rehabilitation Unit”. They were divided into 2 groups. The control group (15 subjects), received placebo and exercise. The treatment group (16 subjects), received 250 IU SOD/day and exercise. Both treatments were done within 8 weeks, with twice a week exercise. Before and after treatment, levels of serum albumin were measured. Data normality was tested using Saphiro-wilk test. Data was analyzed by Paired-T-test if the distribution is normal, and using Wilcoxon test if the distribution is abnormal. Results: There were increases of serum albumin levels in both groups. Statistical test results showed a significant increase of serum albumin levels in the treatment group of 0.26 ± 0.33 mg/dL with p=0,007 (p0,05). Conclusion: 250 IU SOD/day supplementation for 8 weeks increase serum albumin levels in the elderly. Keywords: Albumin, elderly, aging, SO

    Enzyme-linked immunosorbent assay for urinary albumin at low concentrations

    Get PDF
    We describe an enzyme-linked immunosorbent assay (ELISA) for urinary albumin. It requires only commercially available reagents, can detect as little as 16 micrograms of albumin per liter, and analytical recovery ranges from 92 to 116%. The assay is simple, rapid, and inexpensive. Albumin excretion was 6.2 (SD 4.1) mg/24 h in healthy subjects (n = 40), 14.7 (SD 7.2) mg/24 h in albumin-test-strip-negative Type I diabetics (n = 11), and 19.7 (SD 16.2) mg/24 h in patients with essential hypertension (n = 12)

    Influence of biological variations and sample handling on measured microalbuminuria in diabetic patients

    Get PDF
    Five immunochemical assays for determining low concentrations of albumin were investigated. These were a radioimmunoassay (RIA); turbidimetric immunoassays (TIA) both according to end-point measuring principle on a Cobas Fara and Hitachi 717 analysers, and according to kinetic measuring principle on a Turbitimer instrument; and a nephelometric immunoassay (NIA). All achieved the analytical goal necessary for optimal patient care. The correlations between the albumin concentrations measured with the different techniques were very good. In vitro glycation of albumin did not influence albumin concentrations measured by the five assays. Urine albumin excretion measured over 3 consecutie days showed considerable day-to-day variation. This was highest for spot-urine specimens and significantly lower for 24 h and timed-overnight samples. Variation of storage temperature (room temperature, 4°C, -20°C), time (up till 3 months), and pH (within the range pH 5-8) of the urine samples did not change significantly the measured albumin concentrations. Different sample preparations (vortex-mixing, centrifugation, and thawing) had no influence on the measured albumin concentration. In conclusion, a maximum standardization of the collection of timed-overnight urine samples for screening and 24 h urine sampels for confirmation of microalbuminuria during 3 consecutive days is more crucial than the choice of the immunological technique

    Abnormal liver function tests in acute heart failure: relationship with clinical characteristics and outcome in the PROTECT study

    Get PDF
    Aims: Episodes of acute heart failure (AHF) unfavourably affect multiple organs, which may have an adverse impact on the outcomes. We investigated the prevalence and clinical consequences of abnormal liver function tests (LFTs) in AHF patients enrolled in the PROTECT study. Methods and results: The LFTs comprised serial assessment of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and albumin at baseline and during follow-up (daily until discharge, on days 7 and 14). The prevalence of abnormal LFTs (above upper limit of normal for AST and ALT or below lower limit of normal for albumin) was: at baseline AST 20%, ALT 12%, albumin 40%; and at day 14: AST 15%, ALT 9%, albumin 26%. Abnormal LFTs at baseline were associated with a higher risk of in-hospital death with odds ratios [95% confidence interval (CI)] of 3.5 (1.7–7.3) for AST, 3.9 (1.8–8.4) for ALT, and 2.8 (1.3–5.9) for albumin (all P < 0.01). Abnormal baseline and discharge LFTs had an unfavourable impact on 180-day mortality with hazard ratios (95% CI) for baseline AST, ALT, and albumin of 1.3 (1.0–1.7), 1.1 (1.0–1.2), 1.4 (1.1–1.8), respectively, and 1.5 (1.1–2.0), 1.5 (1.0–2.2), and 1.6 (1.2–2.1), for discharge AST, ALT, albumin, respectively (all P < 0.05). Analysis of LFTs trajectories (calculated as changes in LFTs over time) revealed that increasing AST and ALT on day 3 as well as decreasing albumin on day 4 were independent prognosticators of 180-day outcome (all P < 0.05). Conclusions: Abnormal LFTs are frequent in AHF at baseline and during hospital stay and predict worse outcomes. Whether this association is causal and what are the underlying mechanisms involved require further study

    The effect of the systemic inflammatory response on plasma vitamin 25 (OH) D concentrations adjusted for albumin

    Get PDF
    <b>Aim</b><p></p> To examine the relationship between plasma 25(OH)D, CRP and albumin concentrations in two patient cohorts.<p></p> <b>Methods</b><p></p> 5327 patients referred for nutritional assessment and 117 patients with critical illness were examined. Plasma 25 (OH) D concentrations were measured using standard methods. Intra and between assay imprecision was <10%.<p></p> <b>Result</b><p></p> In the large cohort, plasma 25 (OH) D was significantly associated with CRP (rs = −0.113, p<0.001) and albumin (rs = 0.192, p<0.001). 3711 patients had CRP concentrations ≤10 mg/L; with decreasing albumin concentrations ≥35, 25–34 and <25 g/l, median concentrations of 25 (OH) D were significantly lower from 35 to 28 to 14 nmol/l (p<0.001). This decrease was significant when albumin concentrations were reduced between 25–34 g/L (p<0.001) and when albumin <25 g/L (p<0.001). 1271 patients had CRP concentrations between 11–80 mg/L; with decreasing albumin concentrations ≥35, 25–34 and <25 g/l, median concentrations of 25 (OH) D were significantly lower from 31 to 24 to 19 nmol/l (p<0.001). This decrease was significant when albumin concentration were 25–34 g/L (p<0.001) and when albumin <25 g/L (p<0.001). 345 patients had CRP concentrations >80 mg/L; with decreasing albumin concentrations ≥35, 25–34 and <25 g/l, median concentrations of 25 (OH) D were not significantly altered varying from 19 to 23 to 23 nmol/l. Similar relationships were also obtained in the cohort of patients with critical illness.<p></p> <b>Conclusion</b><p></p> Plasma concentrations of 25(OH) D were independently associated with both CRP and albumin and consistent with the systemic inflammatory response as a major confounding factor in determining vitamin D status.<p></p&gt

    The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation

    Get PDF
    Background: Shear stress induces coronary dilatation via production of nitric oxide ( NO). This should involve the endothelial glycocalyx ( EG). A greater effect was expected of albumin versus hydroxyethyl starch ( HES) perfusion, because albumin seals coronary leaks more effectively than HES in an EG-dependent way. Methods: Isolated hearts ( guinea pigs) were perfused at constant pressure with Krebs-Henseleit buffer augmented with 1/3 volume 5% human albumin or 6% HES ( 200/0.5 or 450/0.7). Coronary flow was also determined after EG digestion ( heparinase) and with nitro-L-arginine ( NO-L-Ag). Results: Coronary flow ( 9.50 +/- 1.09, 5.10 +/- 0.49, 4.87 +/- 1.19 and 4.15 +/- 0.09 ml/ min/ g for `albumin', `HES 200', `HES 450' and `control', respectively, n = 5-6) did not correlate with perfusate viscosity ( 0.83, 1.02, 1.24 and 0.77 cP, respectively). NO-L-Ag and heparinase diminished dilatation by albumin, but not additively. Alone NO-L-Ag suppressed coronary flow during infusion of HES 450. Electron microscopy revealed a coronary EG of 300 nm, reduced to 20 nm after heparinase. Cultured endothelial cells possessed an EG of 20 nm to begin with. Conclusions: Albumin induces greater endothelial shear stress than HES, despite lower viscosity, provided the EG contains negative groups. HES 450 causes some NO-mediated dilatation via even a rudimentary EG. Cultured endothelial cells express only a rudimentary glycocalyx, limiting their usefulness as a model system. Copyright (c) 2007 S. Karger AG, Basel

    Allosteric modulation of zinc speciation by fatty acids

    Get PDF
    Background: Serum albumin is the major protein component of blood plasma and is responsible for the circulatory transport of a range of small molecules that include fatty acids, hormones, metal ions and drugs. Studies examining the ligand-binding properties of albumin make up a large proportion of the literature. However, many of these studies do not address the fact that albumin carries multiple ligands (including metal ions) simultaneously in vivo. Thus the binding of a particular ligand may influence both the affinity and dynamics of albumin interactions with another. Scope of review: Here we review the Zn2 + and fatty acid transport properties of albumin and highlight an important interplay that exists between them. Also the impact of this dynamic interaction upon the distribution of plasma Zn2 +, its effect upon cellular Zn2 + uptake and its importance in the diagnosis of myocardial ischemia are considered. Major conclusions: We previously identified the major binding site for Zn2 + on albumin. Furthermore, we revealed that Zn2 +-binding at this site and fatty acid-binding at the FA2 site are interdependent. This suggests that the binding of fatty acids to albumin may serve as an allosteric switch to modulate Zn2 +-binding to albumin in blood plasma. General significance: Fatty acid levels in the blood are dynamic and chronic elevation of plasma fatty acid levels is associated with some metabolic disorders such as cardiovascular disease and diabetes. Since the binding of Zn2 + to albumin is important for the control of circulatory/cellular Zn2 + dynamics, this relationship is likely to have important physiological and pathological implications. This article is part of a Special Issue entitled Serum Albumin

    A mathematical model for fluid-glucose-albumin transport in peritoneal dialysis

    Full text link
    A mathematical model for fluid and solute transport in peritoneal dialysis is constructed. The model is based on a three-component nonlinear system of two-dimensional partial differential equations for fluid, glucose and albumin transport with the relevant boundary and initial conditions. Its aim is to model ultrafiltration of water combined with inflow of glucose to the tissue and removal of albumin from the body during dialysis, and it does this by finding the spatial distributions of glucose and albumin concentrations and hydrostatic pressure. The model is developed in one spatial dimension approximation and a governing equation for each of the variables is derived from physical principles. Under certain assumptions the model are simplified with the aim of obtaining exact formulae for spatially non-uniform steady-state solutions. As the result, the exact formulae for the fluid fluxes from blood to tissue and across the tissue are constructed together with two linear autonomous ODEs for glucose and albumin concentrations in the tissue. The obtained analytical results are checked for their applicability for the description of fluid-glucose-albumin transport during peritoneal dialysis.Comment: 28 pages, 8 figures. arXiv admin note: text overlap with arXiv:1110.128

    Hypoalbuminemia: a Hospital Based Study

    Full text link
    Hypoalbuminemia occurs in a variety of disease states and is associated with an increased rate of complications during hospitalization, resulting in an increased length of stay. The purpose of this study is to investigate the prevalence of hypoalbuminemia in IPD and OPD patients and to see which age group and sex have high prevalence of hypoalbuminemia.Nine hundred forty four patients, attending Nepalgunj medical college and Teaching Hospital, Banke, Nepal from March 2011 to February 2012 were included in this study. The normal reference range for serum albumin was 3.5 – 5.5gm/dL in males and females. Hypoalbuminemia is defined as serum albumin < 3.5 gm/dL. The outcome assessments in the hypoalbuminemia and normal albumin groups were compared. Serum albumin level estimation was done by using the diagnostic reagent kit manufactured by RFCL kit , India. A number of 944 studies were selected, the statistical information of which was collected for systematic analysis.The results showed that the high prevalence of hypoalbuminemia found in males (89.72%) as compare to females(88.12%). The prevalence of hypoalbuminemia is different as the period of age and it increases after 21-40 years and high prevalence seen in after the age of 60. Serum albumin level was low in male as compare to female
    corecore