11,164 research outputs found
A Look at Important Marine Areas in the U.S. Beaufort and Chukchi Seas: Ecologically rich places to protect in the Arctic Ocean
Sound decision-making about the future of the U.S. Arctic Ocean must include an understanding of how its marine ecosystems function. Although all areas of the U.S. Chukchi and Beaufort seas contribute to ecological integrity, some are especially vital to the health of that ecosystem. An extensive review by The Pew Charitable Trusts and nonprofit partners of the best available Arctic science from government, university, and industry researchers has identified several such important marine areas
Interannual variability of epibenthic communities in the Chukchi Sea, Alaska
Thesis (M.S.) University of Alaska Fairbanks, 2015Epibenthic communities contain a wide range of organisms and serve an important role in marine ecosystems. They are involved in carbon remineralization, benthic production, and are important prey items for higher trophic levels. Arctic epibenthic communities may be experiencing significant changes in species composition, abundance, and biomass at both short and long term time scales. While epibenthic communities may be responding to long term shifts in the environment, differentiating long term trends from short term interannual variation can be problematic. The present study examined interannual differences of epibenthic communities and potential environmental drivers of their variability in the Chukchi Sea. For this, a plumb-staff beam trawl was used to sample epibenthic species composition, abundance, and biomass of the dominant invertebrate taxa at 71 stations around the Chukchi Sea during the ice free seasons of 2009, 2010, 2012, and 2013. Over the entire study area and within a smaller area with the most temporal coverage, the largest separation was between 2009 and 2013, with more difference between 2009 to 2010 than between 2012 and 2013. Crustaceans were the most significant contributors to community composition, based on abundance, and biomass. The important environmental drivers that varied along with the epibenthic community in some but not all years included bottom water temperature, salinity, dissolved oxygen, mean sediment chlorophyll a, and sediment organic matter. In contrast, sediment grain size was important in all years and, therefore, was the least likely to contribute to the biological variability among years. While these data provide a benchmark on interannual variability of epibenthic communities in the Chukchi Sea, more monitoring is essential to determine long term trends
Marine Benthic Habitat Mapping of Muir Inlet, Glacier Bay National Park and Preserve, Alaska With an Evaluation of the Coastal and Marine Ecological Classification Standard III
Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes
Ecological linkages: Marine and estuarine ecosystems of Central and Northern California
Three of California’s four National Marine Sanctuaries, Cordell Bank, Gulf of the Farallones, and Monterey Bay, are currently undergoing a comprehensive management plan review. As part of this review, NOAA’s National Marine Sanctuary Program (NMSP) has collaborated with NOAA’s National Centers for Coastal Ocean Science (NCCOS) to conduct a biogeographic assessment of selected marine resources using geographic information system (GIS) technology. This report complements the analyses conducted for this effort by providing an overview of the physical and biological characteristics of the region. Key ecosystems and species occurring in estuarine and marine waters are highlighted and linkages between them discussed. In addition, this report describes biogeographic processes operating to affect species’ distributional patterns. The biogeographic analyses build upon this background to further understanding of the biogeography of this region. (PDF contaons 172 pages
Controls on zooplankton assemblages in the northeastern Chukchi Sea
Thesis (Ph.D.) University of Alaska Fairbanks, 2016The Chukchi Sea is a broad and shallow marginal sea of the western Arctic Ocean that lies between the Bering Sea and the deeper Amerasian basin. It plays a pivotal role as the only gateway for transporting heat, carbon, nutrients, and plankton from the North Pacific into the Arctic Ocean. I examined the seasonal and inter-annual variability of the zooplankton communities in the northeastern region of the Chukchi Sea as part of a high-resolution multidisciplinary ecosystem study. Specifically, I examined how the physical onset of each open water season influenced the composition, abundance, and biomass of zooplankton assemblages from the 2008 to 2010 field seasons. Copepods in the genus Pseudocalanus are key members of the Chukchi community, and may be undergoing species-level biogeographic shift in response to climate change. I determined the degree of gene flow and population connectivity in the Chukchi Sea through comparative phylogeographic analysis of the Pseudocalanus species complex to the northern Gulf of Alaska and Beaufort Sea. I then investigated the extent to which biogeochemical factors influence these zooplankton assemblages by relating a portion of the seasonal production to concurrent changes in herbivorous mesozooplankton biomass during 2010 and 2011. This work demonstrates just how complex and variable marine ecosystems of the western Arctic are, where multidisciplinary and analytical approaches will become essential in detecting change, especially with the rate of present-day climate perturbations.Chapter 1: Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall -- Chapter 2: Phylogeography and connectivity of the Pseudocalanus (Copepoda: Calanoida) species complex in the eastern North Pacific Ocean and the Pacific Arctic Region -- Chapter 3: Community production in the northeastern Chukchi Sea and its relationship to phytoplankton and mesozooplankton biomass, 2010-2011 -- General Conclusions -- References
Tracking carbon sources through an Arctic marine food web: insights from fatty acids and their carbon stable isotopes
Thesis (Ph.D.) University of Alaska Fairbanks, 2014.Marine production across the Bering-Chukchi continental shelf is influenced by seasonal sea ice dynamics and climatic conditions. Of particular importance is variability in the magnitude and timing of annual phytoplankton production in the water column and in sea ice, and effects of such variability on food web composition and productivity. Of primary concern is the long-term effect of the projected loss of Arctic sea ice on ecosystem productivity and stability, and the fate of upper trophic level species. I examined a portion of the Bering-Chukchi Sea food web by analyzing the fatty acid composition and stable carbon isotope ratios of individual fatty acids in particulate organic matter from sea ice and the water column. These techniques were used to make inferences about diets of three species of zooplankton (Themisto libellula, Calanus marshallae/glacialis, Thysanoessa raschii) sampled during a recent climatically cold, relatively heavy sea ice period in the Bering Sea. I also analyzed fatty acids of four species of ice-associated seals--ringed (Pusa/Phoca hispida), bearded (Erignathus barbatus), spotted (Phoca largha), and ribbon seals (Histriophoca fasciata)--sampled during the same relatively cold period (2007-2010) as well as a preceding warm (2002-2005), relatively low sea ice period in the Bering Sea. Particulate organic matter from sea ice and the water column had different fatty acid characteristics, most likely stemming from differences in algal composition. My results also showed that in the Bering Sea cold period, the amphipod T. libellula was predominately carnivorous, and the copepod C. marshallae/glacialis and euphausiid T. raschii were primarily herbivorous, but displayed some degree of omnivory. Across all years (2002-2010), fatty acid composition of ice seals showed clear evidence of resource partitioning among them, and little niche separation between spotted and ribbon seals, which is consistent with previous studies. The fatty acid composition of primarily pelagic feeding adult ringed seals and predominantly benthic feeding adult bearded seals did not differ between the recent warm (2002-2005) and cold (2007-2010) periods in the Bering Sea, suggesting that their diets and possibly food web structures were not affected by these large multiyear environmental fluctuations. Notably however, the stable carbon isotope ratios of individual fatty acids of bearded seals from the Bering Sea cold period were higher than those from the warm period, which suggests that their prey base in the Bering Sea was receiving more input from particulate organic matter from sea ice than the water column during those years. By using the stable carbon isotope ratios of individual fatty acids of particulate organic matter from sea ice and the water column in a series of stable isotope mixing models, I estimated the proportional contribution of fatty acids from sea ice particulate organic matter in T. libellula, C. marshallae/glacialis, and T. raschii collected in 2009 and 2010 as 36-72%, 27-63%, and 39-71%, respectively. Using a similar set of mixing models, I estimated that adult bearded seals had the highest level of fatty acids from sea ice particulate organic matter (62-80%), followed by spotted seals (51-62%), and then ringed seals (21-60%) in 2009 and 2010. Although estimates could not be made for ribbon seals due to lack of samples in 2009 and 2010, their stable carbon isotope ratios of individual fatty acids from 2003 were very similar to those of spotted seals suggesting that the proportional contribution of fatty acids from sea ice particulate organic matter to ribbons seals was similar to that of spotted seals. Assuming that seals sourced their sympagic fatty acids from the Bering Sea, these results suggest that sympagic production is currently an important contributor to food webs supporting both benthic and pelagic upper trophic level species in years with heavy ice cover in the Bering Sea. Thus, the question is raised--with the projected continuing loss of seasonal sea ice in the Arctic, will organic matter input from sympagic production also decline, and will it be compensated for by pelagic production to balance both pelagic and benthic carbon and energy budgets
2018 State-of the Science of Dispersants and Dispersed Oil (DDO) in U.S. Arctic Waters: Eco-Toxicity and Sublethal Impacts
Chemical dispersants were employed on an unprecedented scale during the Deepwater Horizon oil spill in the Gulf of Mexico, and could be a response option should a large spill occur in Arctic waters. The use of dispersants in response to that spill raised concerns regarding the need for chemical dispersants, the fate of the oil and dispersants, and their potential impacts on human health and the environment. Concerns remain that would be more evident in the Arctic, where the remoteness and harsh environmental conditions would make a response to any oil spill very difficult. An outcome of a 2013 Arctic oil spill exercise for senior federal agency leadership identified the need for an evaluation of the state-of-the-science of dispersants and dispersed oil (DDO), and a clear delineation of the associated uncertainties that remain, particularly as they apply to Arctic waters.
The National Oceanic and Atmospheric Administration (NOAA), in partnership with the Coastal Response Research Center (CRRC), and in consultation with the U.S. Environmental Protection Agency (EPA) embarked on a project to seek expert review and evaluation of the state-of-the-science and the uncertainties involving DDO. The project focused on five areas and how they might be affected by Arctic conditions: dispersant effectiveness, distribution and fate, transport and chemical behavior, environmental impacts, and public health and safety. This publication (1 of 5) addresses efficacy and effectiveness
- …