4,597,362 research outputs found

    Thermal reaction of Al/Ti bilayers with contaminated interface

    Get PDF
    We have studied some new aspects of thermal reactions in Al/Ti bilayers in which the interface is purposely contaminated with oxygen. After annealing at a temperature of 460 °C, an Al_3Ti compound forms at the interface, moreover some Al diffuses through the Ti to form a compound at the free surface. The amount of aluminum at the free surface can be as large as at the interface. Nucleation and lateral growth of Al_3Ti at the interface are locally unfavorable. This results in a competition between the lateral growth of Al_3Ti at the Al/Ti interface and the diffusion of Al to the free surface. Once full coverage by Al_3Ti is obtained at the Al/Ti interface, the diffusion of Al to the surface becomes negligible

    Density functional study of copper segregation in aluminum

    Get PDF
    The structural and electronic properties of Cu segregation in aluminum are studied in the framework of the density functional theory, within the projector augmented plane-wave method and both its local density approximation (LDA) and generalized gradient approximation (GGA). We first studied Al–Cu interactions in bulk phase at low copper concentration (≤3.12%: at). We conclude to a tendency to the formation of a solid solution at T=0 K. We moreover investigated surface alloy properties for varying compositions of a Cu doped Al layer in the (111) Al surface then buried in an (111) Al slab. Calculated segregation energies show unstable systems when Cu atoms are in the surface position (position 1). In the absence of ordering effects for Cu atoms in a layer (xCu=1/9 and xCu=1/3), the system is more stable when the doped layer is buried one layer under the surface (position 2), whereas for xCu=1/2 to xCu=1 (full monolayer), the doped layer is more accommodated when buried in the sub-sub-surface (position 3). First stage formation of GP1- and GP2-zones was finally modeled by doping (100) Al layers with Cu clusters in a (111) Al slab, in the surface then buried one and two layers under the surface. These multilayer clusters are more stable when buried one layer beneath the surface. Systems modeling GP1-zones are more stable than systems modeling GP2-zones. However the segregation of a full copper (100) monolayer in an (100) Al matrix shows a copper segregation deep in the bulk with a segregation barrier. Our results fit clearly into a picture of energetics and geometrical properties dominated by preferential tendency to Cu clustering close to the (111) Al surface

    Impact of extreme electrical fields on charge density distributions in Al3Sc alloy

    Get PDF
    Indexación: Web of Science.In this study, the authors investigated how extreme electrical fields affect charge distribution of metallic surfaces and bond character at the moment of evaporation. The surface structure and neighborhood chemistry were also studied as a function of various field evaporation pathways. Density functional theory (DFT) was used to model the surface bonding and charge distribution and then correlate the DFT results with experimental results by comparing the calculated evaporation fields with atom probe tomography measurements. The evaporation fields of different surface neighborhood chemistries in L1(2)-Al3Sc were calculated, with the Sc atoms occupying the corners of a cubic unit cell and the Al atoms occupying the face centers. Al-Al surface atoms are found via DFT to be more likely to evaporate as dimers because of the Al-Al shared charge density. In contrast, Al-Sc evaporates as single ions due to the increased density localized around the Sc atom. This difference in evaporation behavior correlates with the resistance to degradation under extreme fields. This work allows better interpretation of the atom probe data by clarifying the relationship between different evaporation events and the role of surface and subsurface chemistry. (C) 2016 Author(s).http://avs.scitation.org/doi/10.1116/1.496483

    Multiscale modeling of interaction of alane clusters on Al(111) surfaces: A reactive force field and infrared absorption spectroscopy approach

    Get PDF
    We have used reactive force field (ReaxFF) to investigate the mechanism of interaction of alanes on Al(111) surface. Our simulations show that, on the Al(111) surface, alanes oligomerize into larger alanes. In addition, from our simulations, adsorption of atomic hydrogen on Al(111) surface leads to the formation of alanes via H-induced etching of aluminum atoms from the surface. The alanes then agglomerate at the step edges forming stringlike conformations. The identification of these stringlike intermediates as a precursor to the bulk hydride phase allows us to explain the loss of resolution in surface IR experiments with increasing hydrogen coverage on single crystal Al(111) surface. This is in excellent agreement with the experimental works of Go et al. [ E. Go, K. Thuermer, and J. E. Reutt-Robey, Surf. Sci. 437, 377 (1999) ]. The mobility of alanes molecules has been studied using molecular dynamics and it is found that the migration energy barrier of Al_(2)H_6 is 2.99 kcal/mol while the prefactor is D_0 = 2.82 × 10^(−3) cm^2/s. We further investigated the interaction between an alane and an aluminum vacancy using classical molecular dynamics simulations. We found that a vacancy acts as a trap for alane, and eventually fractionates/annihilates it. These results show that ReaxFF can be used, in conjunction with ab initio methods, to study complex reactions on surfaces at both ambient and elevated temperature conditions

    Energetics of hydrogen impurities in aluminum and their effect on mechanical properties

    Full text link
    The effects of hydrogen impurities in the bulk and on the surface of aluminum are theoretically investigated. Within the framework of density functional theory, we have obtained the dependence on H concentration of the stacking fault energy, the cleavage energy, the Al/H surface energy and the Al/H/Al interface formation energy. The results indicate a strong dependence of the slip energy barrier in the [2ˉ11][\bar 211] direction the cleavage energy in the [111] direction and the Al/H/Al interface formation energy, on H concentration and on tension. The dependence of the Al/H surface energy on H coverage is less pronounced, while the optimal H coverage is 0.25\leq 0.25 monolayer. The calculated activation energy for diffusion between high symmetry sites in the bulk and on the surface is practically the same, 0.167 eV. From these results, we draw conclusions about the possible effect of H impurities on mechanical properties, and in particular on their role in embrittlement of Al.Comment: 9 pages, 5 figure

    Influences of Al doping on the electronic structure of Mg(0001) and dissociation property of H2

    Full text link
    By using the density functional theory method, we systematically study the influences of the doping of an Al atom on the electronic structures of the Mg(0001) surface and dissociation behaviors of H2 molecules. We find that for the Al-doped surfaces, the surface relaxation around the doping layer changes from expansion of a clean Mg(0001) surface to contraction, due to the redistribution of electrons. After doping, the work function is enlarged, and the electronic states around the Fermi energy have a major distribution around the doping layer. For the dissociation of H2 molecules, we find that the energy barrier is enlarged for the doped surfaces. Especially, when the Al atom is doped at the first layer, the energy barrier is enlarged by 0.30 eV. For different doping lengths, however, the dissociation energy barrier decreases slowly to the value on a clean Mg(0001) surface when the doping layer is far away from the top surface. Our results well describe the electronic changes after Al-doping for the Mg(0001) surface, and reveal some possible mechanisms for improving the resistance to corrosion of the Mg(0001) surface by doping of Al atoms

    Surface segregation and the Al problem in GaAs quantum wells

    Full text link
    Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped Alx_xGa1x_{1-x}As/GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the Alx_xGa1x_{1-x}As barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the Alx_xGa1x_{1-x}As barrier beneath the QW is increased, which we attribute to the surface segregation of Oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking

    Surface electronic properties of undoped InAlN alloys

    Get PDF
    The variation in surface electronic properties of undoped c-plane InxAl1−xN alloys has been investigated across the composition range using a combination of high-resolution x-ray photoemission spectroscopy and single-field Hall effect measurements. For the In-rich alloys, electron accumulation layers, accompanied by a downward band bending, are present at the surface, with a decrease to approximately flatband conditions with increasing Al composition. However, for the Al-rich alloys, the undoped samples were found to be insulating with approximate midgap pinning of the surface Fermi level observed

    Diffusivity of Ga and Al adatoms on GaAs(001)

    Full text link
    The diffusivity of Ga and Al adatoms on the (2x4) reconstructed GaAs(001) surface are evaluated using detailed ab initio total energy calculations of the potential energy surface together with transition state theory. A strong diffusion anisotropy is found, with the direction of fastest diffusion being parallel to the surface As-dimer orientation. In contrast to previous calculations we identify a short--bridge position between the two As atoms of a surface dimer as the adsorption site for Al and Ga adatoms.Comment: 4 pages, 1 figures, to appear in "The Physics of Semiconductors
    corecore