32,536 research outputs found
Microwave field effect transistor
Electrodes of a high power, microwave field effect transistor are substantially matched to external input and output networks. The field effect transistor includes a metal ground plane layer, a dielectric layer on the ground plane layer, a gallium arsenide active region on the dielectric layer, and substantially coplanar spaced source, gate, and drain electrodes having active segments covering the active region. The active segment of the gate electrode is located between edges of the active segments of the source and drain electrodes. The gate and drain electrodes include inactive pads remote from the active segments. The pads are connected directly to the input and output networks. The source electrode is connected to the ground plane layer. The space between the electrodes and the geometry of the electrodes extablish parasitic shunt capacitances and series inductances that provide substantial matches between the input network and the gate electrode and between the output network and the drain electrode. Many of the devices are connected in parallel and share a common active region, so that each pair of adjacent devices shares the same source electrodes and each pair of adjacent devices shares the same drain electrodes. The gate electrodes for the parallel devices are formed by a continuous stripe that extends between adjacent devices and is connected at different points to the common gate pad
Apparatus and process for microbial detection and enumeration
An apparatus and process for detecting and enumerating specific microorganisms from large volume samples containing small numbers of the microorganisms is presented. The large volume samples are filtered through a membrane filter to concentrate the microorganisms. The filter is positioned between two absorbent pads and previously moistened with a growth medium for the microorganisms. A pair of electrodes are disposed against the filter and the pad electrode filter assembly is retained within a petri dish by retainer ring. The cover is positioned on base of petri dish and sealed at the edges by a parafilm seal prior to being electrically connected via connectors to a strip chart recorder for detecting and enumerating the microorganisms collected on filter
Optimization of Semiautomated Calibration Algorithm of Multichannel Electrotactile Feedback for Myoelectric Hand Prosthesis
The main drawback of the commercially available myoelectric hand prostheses is the absence of somatosensory feedback. We recently developed a feedback interface for multiple degrees of freedom myoelectric prosthesis that allows proprioceptive and sensory information (i.e., grasping force) to be transmitted to the wearer instantaneously. High information bandwidth is achieved through intelligent control of spatiotemporal distribution of electrical pulses over a custom-designed electrode array. As electrotactile sensations are location-dependent and the developed interface requires that electrical stimuli are perceived to be of the same intensity on all locations, a calibration procedure is of high importance. The aim of this study was to gain more insight into the calibration procedure and optimize this process by leveraging a priori knowledge. For this purpose, we conducted a study with 9 able-bodied subjects performing 10 sessions of the array electrode calibration. Based on the collected data, we optimized and simplified the calibration procedure by adapting the initial (baseline) amplitude values in the calibration algorithm. The results suggest there is an individual pattern of stimulation amplitudes across 16 electrode pads for each subject, which is not affected by the initial amplitudes. Moreover, the number of user actions performed and the time needed for the calibration procedure are significantly reduced by the proposed methodology.The research was supported by Tecnalia Research & Innovation,
Spain, and the Ministry of Education, Science and
Technological Development of Republic of Serbia (Project
no. 175016). The authors would like to thank all the volunteers
who participated in this study
THGEM-based detectors for sampling elements in DHCAL: laboratory and beam evaluation
We report on the results of an extensive R&D program aimed at the evaluation
of Thick-Gas Electron Multipliers (THGEM) as potential active elements for
Digital Hadron Calorimetry (DHCAL). Results are presented on efficiency, pad
multiplicity and discharge probability of a 10x10 cm2 prototype detector with 1
cm2 readout pads. The detector is comprised of single- or double-THGEM
multipliers coupled to the pad electrode either directly or via a resistive
anode. Investigations employing standard discrete electronics and the KPiX
readout system have been carried out both under laboratory conditions and with
muons and pions at the CERN RD51 test beam. For detectors having a
charge-induction gap, it has been shown that even a ~6 mm thick single-THGEM
detector reached detection efficiencies above 95%, with pad-hit multiplicity of
1.1-1.2 per event; discharge probabilities were of the order of 1e-6 - 1e-5
sparks/trigger, depending on the detector structure and gain. Preliminary beam
tests with a WELL hole-structure, closed by a resistive anode, yielded
discharge probabilities of <2e-6 for an efficiency of ~95%. Methods are
presented to reduce charge-spread and pad multiplicity with resistive anodes.
The new method showed good prospects for further evaluation of very thin
THGEM-based detectors as potential active elements for DHCAL, with competitive
performances, simplicity and robustness. Further developments are in course.Comment: 15 pages, 11 figures, MPGD2011 conference proceedin
Novel designs for Penning ion traps
We present a number of alternative designs for Penning ion traps suitable for
quantum information processing (QIP) applications with atomic ions. The first
trap design is a simple array of long straight wires which allows easy optical
access. A prototype of this trap has been built to trap Ca+ and a simple
electronic detection scheme has been employed to demonstrate the operation of
the trap. Another trap design consists of a conducting plate with a hole in it
situated above a continuous conducting plane. The final trap design is based on
an array of pad electrodes. Although this trap design lacks the open geometry
of the traps described above, the pad design may prove useful in a hybrid
scheme in which information processing and qubit storage take place in
different types of trap. The behaviour of the pad traps is simulated
numerically and techniques for moving ions rapidly between traps are discussed.
Future experiments with these various designs are discussed. All of the designs
lend themselves to the construction of multiple trap arrays, as required for
scalable ion trap QIP.Comment: 11 pages, 10 figure
Labeless and reversible immunosensor assay based upon an electrochemical current-transient protocol
A novel labeless and reversible immunoassay based upon an electrochemical
current-transient protocol is reported which offers many advantages in
comparison to classical immuno-biochemical analyses in terms of simplicity,
speed of response, reusability and possibility of multiple determinations.
Conducting polypyrrole films containing antibodies against 1) Bovine Serum
Albumin (BSA) and 2) Digoxin were deposited on the surface of platinum
electrodes to produce conductive affinity matrices having clearly defined
binding characteristics. The deposition process has been investigated using 125I
labelled anti-digoxin to determine optimal fabrication protocols. Antibody
integrity and activity, together with non-specific binding of antigen on the
conducting matrix have also been investigated using tritiated digoxin to probe
polypyrrole/anti-digoxin films. Amperometric responses to digoxin were recorded
in flow conditions using these films, but the technique was limited in use
mainly due to baseline instability. Anti-BSA - polypyrrole matrices were
investigated in more detail in both flow and quiescent conditions. No observable
response was found in flow conditions, however under quiescent conditions (in
non-stirred batch cell), anti-BSA – polypyrrole films have been demonstrated to
function as novel quantitative chronoamperometric immuno-biosensors when
interrogated using a pulsed potential waveform. The behaviour of the electrodes
showed that the antibody/antigen binding and/or interaction process underlying
the response observed was reversible in nature, indicating that the electrodes
could be used for multiple sensing protocols. Calibration profiles for BSA
demonstrated linearity for a concentration range of 0-50 ppm but tended towards
a plateau at higher concentrations. Factors relating to replicate sensor
production, sample measurement and reproducibility are discuss
Recommended from our members
Low-cost and low-topography fabrication of multilayer interconnections for microfluidic devices
Multilayer interconnections are needed for microdevices with a large number of independent electrodes. A multi-level photolithographic process is commonly employed to provide multilayer interconnections in integrated circuit (IC) devices, but it is often too expensive for large-area or disposable devices frequently needed for microfluidics. The printed circuit board (PCB) can provide multilayer interconnection at low cost, but its rough topography poses a challenge for small droplets to slide over. Here we report a low-cost fabrication of low-topography multilayer interconnects by selective and controlled anodization of thin-film metal layers. The process utilizes anodization of metal (tantalum in this paper) or, more specifically, repetitions of a partial anodization to form insulation layers between conductive layers and a full anodization to form isolating regions between electrodes, replacing the usual process of depositing, planarizing, and etching insulation layers. After verifying the electric connections and insulations as intended, the developed method is applied to electrowetting-on-dielectric (EWOD), whose complex microfluidic products are currently built on PCB or thin-film transistor (TFT) substrates. To demonstrate the utility, we fabricated a 3 metal-layer EWOD device with steps (surface topography) less than 1 micrometer (vs. > 10 micrometers of PCB EWOD devices) and confirmed basic digital microfluidic operations
Effect of Imperceptible Vibratory Noise Applied to Wrist Skin On Fingertip Touch Evoked Potentials – An EEG Study
Random vibration applied to skin can change the sense of touch. Specifically, low amplitude white-noise vibration can improve fingertip touch perception. In fact, fingertip touch sensation can improve even when imperceptible random vibration is applied to other remote upper extremity areas such as wrist, dorsum of the hand, or forearm. As such, vibration can be used to manipulate sensory feedback and improve dexterity, particularly during neurological rehabilitation. Nonetheless, the neurological bases for remote vibration enhanced sensory feedback are yet poorly understood. This study examined how imperceptible random vibration applied to the wrist changes cortical activity for fingertip sensation. We measured somatosensory evoked potentials to assess peak-to-peak response to light touch of the index fingertip with applied wrist vibration versus without. We observed increased peak-to-peak somatosensory evoked potentials with wrist vibration, especially with increased amplitude of the later component for the somatosensory, motor, and premotor cortex with wrist vibration. These findings corroborate an enhanced cortical-level sensory response motivated by vibration. It is possible that the cortical modulation observed here is the result of the establishment of transient networks for improved perception
- …