1,095 research outputs found

    Overview of Garuda's Operation Control (EM) at Cengkereng Jakarta, Indonesia

    Get PDF
    October 16, 1995Includes bibliographical referencesIntroduction: Airline operations are generally handled in two phases, strategic and tactical. Strategic operations are concerned with schedule planning. Given the desired schedule of services to be offered to passengers (called the Schedule of Services) established by the Commercial/ Marketing department, the Operations group generates the Nominal Operational Schedule (NOS) for the airline's resources such aircraft rotations and crew rotations, and then assigns tail numbers, and individual crew members to a given flight. These activities constitute the schedule generation and resource allocation phases of the scheduling process. They are carried out by various groups which support the development of the planned schedule for all airline resources. Given these resource schedules, the tactical side of the Operations group is responsible for the final stage of the scheduling process: Execution Scheduling. Execution scheduling is the process of executing the system resource schedules on a daily basis. This involves three main activities: executing the pre-planned schedules, updating the schedules for minor operational deviations, and rerouting for irregular operations. The tactical operations of a regular scheduled air carrier is usually under the 24 hour/day control of a central organization often referred to as the Airline Operational Control Center AOCC. This chapter presents a summary of a typical AOCC, outlining its organization, primary activities within the airline, and operational facilities. The facilities and personnel of a particular AOCC will vary considerably depending on the type and size of the airline. AOCC centers can range from a single controller/dispatcher on duty to several dispatchers and hundreds of other personnel handling flights throughout the carrier's entire global network. During the process of operation control, the AOCC is supported by the Maintenance Operations Control Center (MOCC) which controls aircraft maintenance activities, and various Station Operations Control Centers (SOCC) which control station resources (gates, refuelers, catering, ramp handling, and passenger handling facilities). Operations Control Centers are usually linked to the Aeronautical Radio Inc. (ARINC) and the Societe International Telecommunications Aeronautiques (SITA) networks to send and receive teletype/telex messages. Communications with maintenance and engineering, customer service, and airport services are maintained to facilitate prompt contact with the appropriate personnel. Teletype, telex, facsimile, telephone, leased lines, and public data networks combine to provide an effective medium of collecting information and communicating revised operational plans developed by the AOCC center. In some cases, the AOCC has communications systems connected to VHF, HF and Satcom radio links, air traffic control centers, and other relevant locations, allowing them to effectively gather and disseminate information instantaneously

    Approaches to Incorporating Robustness into Airline Scheduling

    Get PDF
    The airline scheduling process used by major airlines today aims to develop opti- mal schedules which maximize revenue. However, these schedules are often far from \optimal" once deployed in the real world because they do not accurately take into account possible weather, air tra c control (ATC), and other disruptions that can occur during operation. The resulting ight delays and cancellations can cause sig- ni cant revenue loss, not to mention service disruptions and customer dissatisfaction. A novel approach to addressing this problem is to design schedules that are robust to schedule disruptions and can be degraded at any airport location or in any region with minimal impact on the entire schedule. This research project suggests new methods for creating more robust airline schedules which can be easily recovered in the face of irregular operations. We show how to create multiple optimal solutions to the Aircraft Routing problem and suggest how to evaluate robustness of those solutions. Other potential methods for increasing robustness of airline schedules are reviewed.NASA grant NAG1-218

    Large-scale mixed integer optimization approaches for scheduling airline operations under irregularity

    Get PDF
    Perhaps no single industry has benefited more from advancements in computation, analytics, and optimization than the airline industry. Operations Research (OR) is now ubiquitous in the way airlines develop their schedules, price their itineraries, manage their fleet, route their aircraft, and schedule their crew. These problems, among others, are well-known to industry practitioners and academics alike and arise within the context of the planning environment which takes place well in advance of the date of departure. One salient feature of the planning environment is that decisions are made in a frictionless environment that do not consider perturbations to an existing schedule. Airline operations are rife with disruptions caused by factors such as convective weather, aircraft failure, air traffic control restrictions, network effects, among other irregularities. Substantially less work in the OR community has been examined within the context of the real-time operational environment. While problems in the planning and operational environments are similar from a mathematical perspective, the complexity of the operational environment is exacerbated by two factors. First, decisions need to be made in as close to real-time as possible. Unlike the planning phase, decision-makers do not have hours of time to return a decision. Secondly, there are a host of operational considerations in which complex rules mandated by regulatory agencies like the Federal Administration Association (FAA), airline requirements, or union rules. Such restrictions often make finding even a feasible set of re-scheduling decisions an arduous task, let alone the global optimum. The goals and objectives of this thesis are found in Chapter 1. Chapter 2 provides an overview airline operations and the current practices of disruption management employed at most airlines. Both the causes and the costs associated with irregular operations are surveyed. The role of airline Operations Control Center (OCC) is discussed in which serves as the real-time decision making environment that is important to understand for the body of this work. Chapter 3 introduces an optimization-based approach to solve the Airline Integrated Recovery (AIR) problem that simultaneously solves re-scheduling decisions for the operating schedule, aircraft routings, crew assignments, and passenger itineraries. The methodology is validated by using real-world industrial data from a U.S. hub-and-spoke regional carrier and we show how the incumbent approach can dominate the incumbent sequential approach in way that is amenable to the operational constraints imposed by a decision-making environment. Computational effort is central to the efficacy of any algorithm present in a real-time decision making environment such as an OCC. The latter two chapters illustrate various methods that are shown to expedite more traditional large-scale optimization methods that are applicable a wide family of optimization problems, including the AIR problem. Chapter 4 shows how delayed constraint generation and column generation may be used simultaneously through use of alternate polyhedra that verify whether or not a given cut that has been generated from a subset of variables remains globally valid. While Benders' decomposition is a well-known algorithm to solve problems exhibiting a block structure, one possible drawback is slow convergence. Expediting Benders' decomposition has been explored in the literature through model reformulation, improving bounds, and cut selection strategies, but little has been studied how to strengthen a standard cut. Chapter 5 examines four methods for the convergence may be accelerated through an affine transformation into the interior of the feasible set, generating a split cut induced by a standard Benders' inequality, sequential lifting, and superadditive lifting over a relaxation of a multi-row system. It is shown that the first two methods yield the most promising results within the context of an AIR model.PhDCommittee Co-Chair: Clarke, John-Paul; Committee Co-Chair: Johnson, Ellis; Committee Member: Ahmed, Shabbir; Committee Member: Clarke, Michael; Committee Member: Nemhauser, Georg

    The operational flight and multi-crew scheduling problem

    Get PDF
    This paper introduces a new kind of operational multi-crew scheduling problem which consists in simultaneously modifying, as necessary, the existing flight departure times and planned individual work days (duties) for the set of crew members, while respecting predefined aircraft itineraries. The splitting of a planned crew is allowed during a day of operations, where it is more important to cover a flight than to keep planned crew members together. The objective is to cover a maximum number of flights from a day of operations while minimizing changes in both the flight schedule and the next-day planned duties for the considered crew members. A new type of the same flight departure time constraints is introduced. They ensure that a flight which belongs to several personalized duties, where the number of duties is equal to the number of crew members assigned to the flight, will have the same departure time in each of these duties. Two variants of the problem are considered. The first variant allows covering of flights by less than the planned number of crew members, while the second one requires covering of flights by a complete crew. The problem is mathematically formulated as an integer nonlinear multi-commodity network flow model with time windows and supplementary constraints. The optimal solution approach is based on Dantzig-Wolfe decomposition/column generation embedded into a branch-and-bound scheme. The resulting computational times on commercial-size problems are very good. Our new simultaneous approach produces solutions whose quality is far better than that of the traditional sequential approach where the flight schedule has been changed first and then input as a fixed data to the crew scheduling problem

    Solving the integrated airline recovery problem using column-and-row generation

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAirline recovery presents very large and difficult problems requiring high quality solutions within very short time limits. To improve computational performance, various solution approaches have been employed, including decomposition methods and approximation techniques. There has been increasing interest in the development of efficient and accurate solution techniques to solve an integrated airline recovery problem. In this paper, an integrated airline recovery problem is developed, integrating the schedule, crew and aircraft recovery stages, and is solved using column-and-row generation. A general framework for column-and-row generation is presented as an extension of current generic methods. This extension considers multiple secondary variables and linking constraints and is proposed as an alternative solution approach to Benders’ decomposition. The application of column-and-row generation to the integrated recovery problem demonstrates the improvement in the solution runtimes and quality compared to a standard column generation approach. Columnand-row generation improves solution runtimes by reducing the problem size and thereby achieving faster execution of each LP solve. As a result of this evaluation, a number of general enhancement techniques are identified to further reduce the runtimes of column-and-row generation. This paper also details the integration of the row generation procedure with branch-and-price, which is used to identify integral optimal solutions

    A novel passenger recovery approach for the integrated airline recovery problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Schedule disruptions require airlines to intervene through the process of recovery; this involves modifications to the planned schedule, aircraft routings, crew pairings and passenger itineraries. Passenger recovery is generally considered as the final stage in this process, and hence passengers experience unnecessarily large impacts resulting from flight delays and cancellations. Most recovery approaches considering passengers involve a separately defined module within the problem formulation. However, this approach may be overly complex for recovery in many aviation and general transportation applications. This paper presents a unique description of the cancellation variables that models passenger recovery by prescribing the alternative travel arrangements for passengers in the event of flight cancellations. The results will demonstrate that this simple, but effective, passenger recovery approach significantly reduces the operational costs of the airline and increases passenger flow through the network. The integrated airline recovery problem with passenger reallocation is solved using column-and-row generation to achieve high quality solutions in short runtimes. An analysis of the column-and-row generation solution approach is performed, identifying a number of enhancement techniques to further improve the solution runtimes.Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems (MASCOS
    • …
    corecore