65,198 research outputs found

    Numerical investigation of airborne contaminant transport under different vortex structures in the aircraft cabin.

    Get PDF
    Airborne contaminants such as pathogens, odors and CO2 released from an individual passenger could spread via air flow in an aircraft cabin and make other passengers unhealthy and uncomfortable. In this study, we introduced the airflow vortex structure to analyze how airflow patterns affected contaminant transport in an aircraft cabin. Experimental data regarding airflow patterns were used to validate a computational fluid dynamics (CFD) model. Using the validated CFD model, we investigated the effects of the airflow vortex structure on contaminant transmission based on quantitative analysis. It was found that the contaminant source located in a vorticity-dominated region was more likely to be "locked" in the vortex, resulting in higher 62% higher average concentration and 14% longer residual time than that when the source was on a deformation dominated location. The contaminant concentrations also differed between the front and rear parts of the cabin because of different airflow structures. Contaminant released close to the heated manikin face was likely to be transported backward according to its distribution mean position. Based on these results, the air flow patterns inside aircraft cabins can potentially be improved to better control the spread of airborne contaminant

    The effect of flotation cell shape on deinking behaviour

    Get PDF
    Studies were undertaken to investigate the deinking behaviour of different shaped deinking cells of the same volume. For comparative purposes, most oprational variables were kept constant, and the same injector was used throughout the study. The position of the injector, however, was varied in some cases to go along with the particular cell shape being studied. Three types of cell shapes were studied, (1) cylindrical with tangential air injection, (2) rectanular with vertical injection, and (3) rectangular with horizontal injection. Eucalyptus/toner slurries and news/mag wastepaper slurries were deinked. Flow patterns in the cells and the corresponding deinking efficiencies were measured. It was found that strong and excessive re-circulatory flows within the cells could under certain conditions be a major factor in reducing brightness lift. Vertical injection into a rectangular cell gave stable flow patterns, non-wavy froth removal and sustained brightness lift for a wide range of feed and airflow rates. Horizontal injection into a similar rectangular shaped cell exhibited quite different characteristics. High brightness lift was possible for certain conditions and not for others. Wavy froth and excessive recirculation flow patterns varied with feed and airflow. The cylindrical cell with tangential injection gave stable circulatory flow and stable froth removal at low flow rates but was unable to deink at high flows

    Laboratory Study of the Effect of Electromagnetic Waves on Airflow during Air Sparging

    Get PDF
    Air sparging is a technique that uses the injection of a gas (e.g., air, oxygen) into the subsurface to remediate saturated soils and groundwater contaminated with volatile organic compounds (VOCs). Contaminant-removal efficiency and air-sparging performance are highly dependent on the pattern and type of airflow. Airflow, however, suffers from air channel formation (i.e., preferential paths for airflow), limiting remediation to smaller contaminated zones. This paper presents the results of experimental work investigating the possibility of controlling and improving airflow patterns through a saturated glass-bead medium using electromagnetic (EM) waves to enhance air sparging. The test setup consists of a resonant cavity made of an acrylic tank covered with transparent, electrically conductive films. Experimental measurement of the electric field component of EM waves is performed at different frequencies. Airflow pattern is also studied at different air-injection pressure levels with/without EM stimulation. The zone of influence (ZOI) during air sparging is monitored using digital imaging. A quantitative approach is then taken to correlate the characteristics of EM waves and airflow patterns

    Numerical simulation of convective airflow in an empty room

    Get PDF
    Numerical simulation of airflow inside an empty room has been carried out for a forced convection, a natural convection and a mixed convection respectively, by using a computational fluid dynamics approach of solving the Reynolds-averaged Navier-Stokes fluid equations. Two-dimensional model was studied at first; focusing on the grid refinement, the mesh topology effect, and turbulence model influences. It was found that structured mesh results are in better agreement with available experimental measurements for all three scenarios. Further study using a three-dimensional model has shown very good agreements with test data at measuring points. Furthermore, present studies have revealed low-frequency flow unsteadiness by monitoring the time history of flow variables at measuring positions. This phenomenon has not yet reported and discussed in previous studies

    Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution

    Get PDF
    Objectives (1) Analyze the relationship between intranasal airflow distribution and subjective nasal patency in healthy and nasal airway obstruction (NAO) cohorts using computational fluid dynamics (CFD). (2) Determine whether intranasal airflow distribution is an important objective measure of airflow sensation that should be considered in future NAO virtual surgery planning. Study Design Cross-sectional. Setting Academic tertiary medical center and academic dental clinic. Subjects and Methods Three-dimensional models of nasal anatomy were created based on computed tomography scans of 15 patients with NAO and 15 healthy subjects and used to run CFD simulations of nasal airflow and mucosal cooling. Subjective nasal patency was quantified with a visual analog scale (VAS) and the Nasal Obstruction Symptom Evaluation (NOSE). Regional distribution of nasal airflow (inferior, middle, and superior) was quantified in coronal cross sections in the narrowest nasal cavity. The Pearson correlation coefficient was used to quantify the correlation between subjective scores and regional airflows. Results Healthy subjects had significantly higher middle airflow than patients with NAO. Subjective nasal patency had no correlation with inferior and superior airflows but a high correlation with middle airflow (|r| = 0.64 and |r| = 0.76 for VAS and NOSE, respectively). Anterior septal deviations tended to shift airflow inferiorly, reducing middle airflow and reducing mucosal cooling in some patients with NAO. Conclusion Reduced middle airflow correlates with the sensation of nasal obstruction, possibly due to a reduction in mucosal cooling in this region. Further research is needed to elucidate the role of intranasal airflow distribution in the sensation of nasal airflow
    corecore