1,549 research outputs found

    Optimisation du trafic aérien à l'arrivée dans la zone terminale et dans l'espace aérien étendu

    Get PDF
    Selon les prévisions à long terme du trafic aérien de l'Organisation de l'Aviation Civile Internationale (OACI) en 2018, le trafic mondial de passagers devrait augmenter de 4,2% par an de 2018 à 2038. Bien que l'épidémie de COVID-19 ait eu un impact énorme sur le transport aérien, il se rétablit progressivement. Dès lors, l'efficacité et la sécurité resteront les principales problématiques du trafic aérien, notamment au niveau de la piste qui est le principal goulot d'étranglement du système. Dans le domaine de la gestion du trafic aérien, la zone de manœuvre terminale (TMA) est l'une des zones les plus complexes à gérer. En conséquence, le développement d'outils d'aide à la décision pour gérer l'arrivée des avions est primordial. Dans cette thèse, nous proposons deux approaches d'optimisation qui visent à fournir des solutions de contrôle pour la gestion des arrivées dans la TMA et dans un horizon étendu intégrant la phase en route. Premièrement, nous abordons le problème d'ordonnancement des avions sous incertitude dans la TMA. La quantification et la propagation de l'incertitude le long des routes sont réalisées grâce à un modèle de trajectoire qui représente les informations temporelles sous forme de variables aléatoires. La détection et la résolution des conflits sont effectuées à des points de cheminement d'un réseau prédéfini sur la base des informations temporelles prédites à partir de ce modèle. En minimisant l'espérance du nombre de conflits, les vols peuvent être bien séparés. Outre le modèle proposé, deux autres modèles de la litérrature - un modèle déterministe et un modèle intégrant des marges de séparation - sont présentés comme références. Un recuit simulé (SA) combiné à une fenêtre glissante temporelle est proposé pour résoudre une étude de cas de l'aéroport de Paris Charles de Gaulle (CDG). De plus, un cadre de simulation basé sur l'approche Monte-Carlo est implémenté pour perturber aléatoirement les horaires optimisés des trois modèles afin d'évaluer leurs performances. Les résultats statistiques montrent que le modèle proposé présente des avantages absolus dans l'absorption des conflits en cas d'incertitude. Dans une deuxième partie, nous abordons un problème dynamique basé sur le concept de Gestion des Arrivées Étendue (E-AMAN). L'horizon E-AMAN est étendu jusqu'à 500 NM de l'aéroport de destination permettant ainsi une planification anticipée. Le caractère dynamique est traitée par la mise à jour périodique des informations de trajectoires réelles sur la base de l'approche par horizon glissant. Pour chaque horizon temporel, un sous-problème est établi avec pour objectif une somme pondérée de métriques de sécurité du segment en route et de la TMA. Une approche d'attribution dynamique des poids est proposée pour souligner le fait qu'à mesure qu'un aéronef se rapproche de la TMA, le poids de ses métriques associées à la TMA devrait augmenter. Une étude de cas est réalisée à partir des données réelles de l'aéroport de Paris CDG. Les résultats finaux montrent que grâce à cet ajustement anticipé, les heures d'arrivée des avions sont proches des heures prévues tout en assurant la sécurité et en réduisant les attentes. Dans la troisième partie de cette thèse, on propose un algorithme qui accélère le processus d'optimisation. Au lieu d'évaluer les performances de tous les aéronefs, les performances d'un seul aéronef sont concentrées dans la fonction objectif. Grâce à ce changement, le processus d'optimisation bénéficie d'une évaluation d'objectif rapide et d'une vitesse de convergence élevée. Afin de vérifier l'algorithme proposé, les résultats sont analysés en termes de temps d'exécution et de qualité des résultats par rapport à l'algorithme utilisé à l'origine.According to the long term air traffic forecasts done by International Civil Aviation Organization (ICAO) in 2018, global passenger traffic is expected to grow by 4.2% annually from 2018 to 2038 using the traffic data of 2018 as a baseline. Even though the outbreak of COVID-19 has caused a huge impact on the air transportation, it is gradually restoring. Considering the potential demand in future, air traffic efficiency and safety will remain critical issues to be considered. In the airspace system, the runway is the main bottleneck in the aviation chain. Moreover, in the domain of air traffic management, the Terminal Maneuvering Area (TMA) is one of the most complex areas with all arrivals converging to land. This motivates the development of suitable decision support tools for providing proper advisories for arrival management. In this thesis, we propose two optimization approaches that aim to provide suitable control solutions for arrival management in the TMA and in the extended horizon that includes the TMA and the enroute phase. In the first part of this thesis, we address the aircraft scheduling problem under uncertainty in the TMA. Uncertainty quantification and propagation along the routes are realized in a trajectory model that formulates the time information as random variables. Conflict detection and resolution are performed at waypoints of a predefined network based on the predicted time information from the trajectory model. By minimizing the expected number of conflicts, consecutively operated flights can be well separated. Apart from the proposed model, two other models - the deterministic model and the model that incorporates separation buffers - are presented as benchmarks. Simulated annealing (SA) combined with the time decomposition sliding window approach is used for solving a case study of the Paris Charles de Gaulle (CDG) airport. Further, a simulation framework based on the Monte-Carlo approach is implemented to randomly perturb the optimized schedules of the three models so as to evaluate their performances. Statistical results show that the proposed model has absolute advantages in conflict absorption when uncertainty arises. In the second part of this thesis, we address a dynamic/on-line problem based on the concept of Extended Arrival MANagement (E-AMAN). The E-AMAN horizon is extended up to 500NM from the destination airport so as to enhance the cooperation and situational awareness of the upstream sector control and the TMA control. The dynamic feature is addressed by periodically updating the real aircraft trajectory information based on the rolling horizon approach. For each time horizon, a sub-problem is established taking the weighted sum of safety metrics in the enroute segment and in the TMA as objective. A dynamic weights assignment approach is proposed to emphasize the fact that as an aircraft gets closer to the TMA, the weight for its metrics associated with the TMA should increase. A case study is carried out using the real arrival traffic data of the Paris CDG airport. Final results show that through early adjustment, the arrival time of the aircraft can meet the required schedule for entering the TMA, thus ensuring overall safety and reducing holding time. In the third part of this thesis, an algorithm that expedites the optimization process is proposed. Instead of evaluating the performance of all aircraft, single aircraft performance is focused and a corresponding objective function is created. Through this change, the optimization process benefits from fast evaluation of objective and high convergence speed. In order to verify the proposed algorithm, results are analyzed in terms of execution time and quality of result compared to the originally used algorithm

    Effects of linear holding for reducing additional flight delays without extra fuel consumption

    Get PDF
    This paper presents an approach to implement linear holding (LH) for flights initially subject to ground holding, in the context of Trajectory Based Operations. The aim is to neutralize additional delays raised from the lack of coordination between various traffic management initiatives (TMIs) and without incurring extra fuel consumption. Firstly, motivated from previous works on the features of LH to absorb delays airborne, a potential applicability of LH to compensate part of the fixed ground holding is proposed. Then, the dynamic adjustment of LH in response to TMIs-associated tactical delays is formulated as a multi-stage aircraft trajectory optimization problem, addressing both pre- and post-departure additional delays. Results suggest that additional delays of 25 mins in a typical case study can be totally recovered at no extra fuel cost. A notable extent of delay reduction observed from the computational experiments further supports the benefits of LH for reducing different combinations of additional delays without consuming extra fuel.Peer ReviewedPostprint (author's final draft

    Cost-based linear holding practice and collaborative air traffic flow management under trajectory based operations

    Get PDF
    The current air transportation system is reaching the capacity limit in many countries/regions across the world. It tends to be less efficient or even incapable sometimes to deal with the enormous air traffic demand that continues growing year by year. This has been evidenced by the record-breaking flight delays reported in various places in recent years, which, have resulted in notable economical loses. To mitigate this imbalance between demand and capacity, air traffic flow management (ATFM) is usually one of the most useful options. It regulates traffic flows according to air traffic control capacity while preserving safety and efficiency of flights. ATFM initiatives can be considered well in advance of the flight execution - more than one year earlier - based on air traffic forecasts and capacity plans, and continue in effect, with information updated, to eventually the day of operation. This long effective period will inevitably allow substantial collaboration among different stakeholders, including the ATFM authority, airspace users (AUs), air navigation service providers (ANSPs), airports, etc. Under the forthcoming paradigm of trajectory based operations (TBO), the flight 4-Dimensional trajectory has been anticipated to further enhance the connection between flight planning and execution phases, thus fostering such collaboration in ATFM. Moreover, under nowadays operations, ground holding is a typical measure undertaken in many widely-used ATFM programs. Even though holding on the ground, at the origin airport, has the advantage of fuel efficiency over the air holding, it turns out that its feature of low flexibility would, in some circumstances, affect the ATFM performance. Yet, with proper flight trajectory management, it is also possible to have delay airborne at no extra fuel cost than performing ground holding. This PhD thesis firstly focuses on this trajectory management, specifically on a cost-based linear holding practice. The linear holding is realized progressively along the planned trajectory through precise speed control which can be enabled by aircraft trajectory optimization techniques. Some typical short/mid haul flights are simulated for achieving the maximum airborne delay that can be yielded using same fuel consumption as initially scheduled. Based on this, its potential applicability is demonstrated. A network ATFM model is adapted from the well-studied Bertsimas Stock-Patterson (BSP) model, incorporating different types of delay (including the linear holding) to flexibly handle the traffic flow with a set of given (yet changeable) capacities. In order that the benefits of the model can be fully realized, AUs are required to participate in the decision-making process, submitting for instance the maximum linear holding bound per flight along the planned trajectory. Next, increased AUs' participation is expected for a proposed Collaborative ATFM framework, in which not only various delay initiatives are considered, but also alternative trajectories which allow flights to route out of the identified hotspot areas. A centralized linear programming optimization model then computes for the best trajectory selections and the optimal delay distributions across all concerned flights. Finally, ANSPs' involvement is additionally considered for the framework, through dynamic airspace reconfiguration, further enhancing the collaboration between ATFM stakeholders. As such, the traffic flow regulation and sector opening scheduling are bounded into an integrated optimization model, and thus are conducted in a synchronized way. Results indicate that the performance of demand and capacity balancing can be even improved if compared with the previous ATFM models presented in this PhD thesis.El sistema de transport aeri actual està arribant al seu límit de capacitat en molts països i regions del món. Una gestió del flux de trànsit aeri (ATFM) més adequada podria mitigar aquest desequilibri entre la demanda i la capacitat. La funció de l'ATFM és regular els fluxos de trànsit aeri segons la capacitat de control del trànsit aeri, i alhora assegurar que els vols siguin segurs i eficients. Les regulacions del sistema d'ATFM es poden aplicar molt abans de l'execució del vol més d'un any abans. Un cop aplicades, aquestes regulacions continuaran evolucionant, amb informació actualitzada, fins el dia de la seva execució. El llarg període entre la planificació del vol i la seva execució permetrà una important col·laboració entre els diferents membres implicats, inclosa l'autoritat de l'ATFM, els usuaris de l'espai aeri (AUs), els proveïdors de serveis de navegació aèria (ANSP), els aeroports, etc. En les operacions d'avui en dia l'espera a terra és una de les regulacions que més aplica el sistema d'ATFM per tal d'evitar congestions als aeroports o sectors de l'espai aeri. Tot i que esperar a terra, a l'aeroport d'origen, té l'avantatge de consumir menys combustible que esperar a l'aire a l'aeroport de destí, la seva poca flexibilitat podria afectar negativament al rendiment de l'ATFM en algunes circumstàncies. Tanmateix, amb una gestió adequada de la trajectòria de vol, també és possible efectuar cert retard a l'aire sense cap cost addicional de combustible respecte al que resultaria esperant a terra. Aquesta tesi doctoral s'enfoca en primer lloc en aquesta gestió de trajectòria de vol, específicament en una pràctica d'espera tenint en compte els costos per l'aerolínia. L'espera lineal s'efectua progressivament al llarg de la trajectòria planificada mitjançant un control precís de la velocitat. Les velocitats que generen l'espera desitjada durant el vol és calculen mitjançant tècniques d'optimització. Alguns vols típics de curt i mig abast es simulen per quantificar el màxim retard a l'aire que es podria generar utilitzant el mateix consum de combustible que el previst inicialment. Basant-se en els resultats obtinguts, s'explora la seva aplicabilitat potencial. Es desenvolupa un model de la xarxa d'ATFM basat en el model de Bertsima Stock-Patterson. Com a novetat, el model desenvolupat en aquesta tesi incorpora diferents tipus de retard (incloent-hi l'espera lineal) per gestionar de forma més flexible el flux de trànsit donat un conjunt de capacitats pre-definides. Per tal d'explotar al màxim els beneficis del model proposat en aquesta tesi, les autoritats regionals estan obligades a participar en el procés de presa de decisions, declarant, per exemple, la màxima espera lineal associada a cada vol al llarg de la trajectòria planejada. Tot seguit, s'inclou la participació dels AUs en un sistema d'ATFM col·laboratiu, en el qual no només es consideren diverses tipus de retard per balancejar la capacitat i la demanda, sinó també trajectòries alternatives que permeten que els vols evitin de forma òptima els sectors de l?espai aeri congestionats. Un model d'optimització centralitzat basat en programació lineal calcula les millors seleccions de trajectòria i les distribucions òptimes de retard en tots els vols afectats per la regulació. Es demostra que incloure trajectòries alternatives pot reduir notablement la quantitat de retards. Finalment, es considera també la participació de l'ANSP en el sistema d'ATFM, a través de la configuració dinàmica de l'espai aeri, millorant encara més la col·laboració entre els membres implicats en el sistema. Com a tal, la regulació del flux de trànsit i la programació d'obertura dels diferents sectors de l'espai aeri s'inclouen en un model integrat d'optimització i, per tant, es programen de forma sincronitzada. Els resultats suggereixen que el rendiment del balanc¸ de la demanda i la capacitat es pot millorar encara m´es amb aquest sistema ATFM col·laboratiu complert. El nou model de balanc¸ de demanda i capacitat millora encara ées els resultats, si es compara amb els altres models d’ATFM presentats també en aquesta tesi doctoral.El sistema de transporte aéreo actual está llegando a su límite de capacidad en muchos países y regiones del mundo. Como consecuencia, éste tiende a ser menos eficiente e incluso en ocasiones incapaz de afrontar la enorme demanda de tráfico aéreo que incluso hoy en día crece rápidamente. Este hecho se ha visto evidenciado por los enormes retrasos registrados en diferentes lugares los últimos años, lo cual ha comportado enormes pérdidas económicas para la sociedad. Una gestión del flujo del tráfico aéreo (ATFM) más adecuada podría mitigar este desequilibrio entre la demanda y la capacidad. La función del ATFM es regular los flujos de tráfico aéreo según la capacidad de control del tráfico aéreo, siempre asegurando que los vuelos sean seguros y eficientes. Las regulaciones del sistema de ATFM se pueden aplicar mucho antes de la ejecución del vuelo –más de un año antes– en función de las previsiones de tráfico aéreo y de la capacidad esperada. Una vez aplicadas, estas regulaciones continuarán evolucionando, con información actualizada, hasta el día de su ejecución. El largo periodo entre la planificación del vuelo y su ejecución permitirá una importante colaboración entre los diferentes miembros implicados, incluida la autoridad del ATFM, los usuarios del espacio aéreo (AUs), los proveedores de servicios de navegación aérea (ANSP), los aeropuertos, etc. En el marco del futuro paradigma de las operaciones basadas en trayectorias, la introducción de vuelos con control sobre la trayectoria en las 4 dimensiones espera mejorar aún más la conexión entre las fases de planificación del vuelo y su ejecución, fomentando así la colaboración en el proceso de toma de decisiones del sistema ATFM. En las operaciones de hoy en día la espera en tierra es una de las regulaciones que más se aplica en el sistema de ATFM con el fin de evitar congestiones en los aeropuertos o en los sectores del espacio aéreo. Aun teniendo en cuenta que esperar en tierra, en el aeropuerto de origen, tiene la ventaja de consumir menos combustible que esperar en el aire en el aeropuerto de destino, su poca flexibilidad podría afectar negativamente al rendimiento del ATFM en algunas circunstancias. Aun así, con una gestión adecuada de la trayectoria de vuelo, también es posible efectuar cierto retraso en el aire sin ningún coste adicional de combustible respecto a lo que resultaría esperando en tierra. Esta tesis doctoral se centra en primer lugar en esta gestión de la trayectoria de vuelo, específicamente en una práctica de espera lineal considerando los costes para la aerolínea. La espera lineal se efectúa progresivamente a lo largo de la trayectoria planificada mediante un control preciso de la velocidad. Las velocidades que generan la espera deseada durante el vuelo se calculan mediante técnicas de optimización. Algunos vuelos típicos de corto y medio alcance se simulan para cuantificar el máximo retraso en el aire que se podría generar utilizando el mismo consumo de combustible que el previsto inicialmente. Basándose en los resultados obtenidos, se investiga su potencial aplicabilidad, como por ejemplo mejorar la planificación de programas de flujo del espacio aéreo, y ayudar a neutralizar los retrasos no deseados adicionales debidos a la incertidumbre del sistema. Se desarrolla un modelo de la red de ATFM basado en el conocido modelo Bertsimas Stock-Patterson (BSP). Como novedad, el modelo desarrollado en esta tesis incorpora diferentes tipos de retraso (incluyendo la espera lineal) para gestionar de manera más flexible el flujo de tráfico dado un conjunto de capacidades predefinidas. Con el fin de explotar al máximo los beneficios del modelo propuesto en esta tesis, se asume que las aerolíneas participaran en el proceso de toma de decisiones, declarando, por ejemplo, la máxima espera lineal asociada a cada vuelo a lo largo de la trayectoria planeada. Este concepto se ilustra con un caso de estudio, donde se demuestra una reducción significativa de los retrasos, comparado con el modelo BSP. Seguidamente, se incluye la participación de las aerolíneas en un sistema de ATFM colaborativo, en el cual no tan sólo se consideran diferentes tipos de retrasos para balancear la capacidad y la demanda, sino también trayectorias alternativas que permiten que los vuelos eviten de forma óptima los sectores del espacio aéreo congestionados. Un modelo de optimización centralizado basado en programación lineal calcula las mejores selecciones de la trayectoria y las distribuciones óptimas de retraso en todos los vuelos afectado por la regulación. Se demuestra que incluir trayectorias alternativas puede reducir notablemente la cantidad de retrasos. Finalmente, se considera también la participación de los ANSP en el sistema de ATFM, a través de la configuración dinámica del espacio aéreo, mejorando aún más la colaboración entre los miembros implicados en el sistema. Como tales, la regulación del flujo de tráfico aéreo y la programación de apertura de los diferentes sectores del espacio aéreo se incluyen en un modelo integrado de optimización y, por lo tanto, se programan de manera sincronizada. El nuevo modelo de balance de demanda y capacidad mejora aún más los resultados, si se compara con los otros modelos ATFM presentados también en esta tesis doctoralPostprint (published version

    Maximizing airborne delay at no extra fuel cost by means of linear holding

    Get PDF
    This paper introduces a linear holding strategy based on prior works on cruise speed reduction, aimed at performing airborne delay at no extra fuel cost, as a complementary strategy to current ground and airborne holding strategies. Firstly, the equivalent speed concept is extended to climb and descent phases through an analysis of fuel consumption and speed from aircraft performance data. This gives an insight of the feasibility to implement the concept, differentiating the case where the cruise flight level initially requested is kept and the case where it can be changed before departure in order to maximize the linear holding time. Illustrative examples are given, where typical flights are simulated using an optimal trajectory generation tool where linear holding is maximized while keeping constant the initially planned fuel. Finally, the effects of linear holding are thoroughly assessed in terms of the vertical trajectory profiles, range of feasible speed intervals and trade-offs between fuel and time. Results show that the airborne delay increases significantly with nearly 3-fold time for short-haul flights and 2-fold for mid-hauls to the cases in prior works.Peer ReviewedPostprint (author's final draft

    Decentralized aircraft landing scheduling at single runway non-controlled airports

    Get PDF
    The existing air transportation system is approaching a bottleneck because its dominant huband- spoke model results in a concentration of a large percentage of the air traffic at a few hub airports. Advanced technologies are greatly needed to enhance the transportation capabilities of the small airports in the U.S.A., and distribute the high volume of air traffic at the hub airports to those small airports, which are mostly non-controlled airports. Currently, two major focus areas of research are being pursued to achieve this objective. One focus concentrates on the development of tools to improve operations in the current Air Traffic Management system. A more long-term research effort focuses on the development of decentralized Air Traffic Management techniques. This dissertation takes the latter approach and seeks to analyze the degree of decentralization for scheduling aircraft landings in the dynamic operational environment at single runway noncontrolled airports. Moreover, it explores the feasibility and capability of scheduling aircraft landings within uninterrupted free-flight environment in which there is no existence of Air Traffic Control (ATC). First, it addresses the approach of developing static optimization algorithms for scheduling aircraft landings and, thus, analyzes the capability of automated aircraft landing scheduling at single runway non-controlled airports. Then, it provides detailed description of the implementation of a distributed Air Traffic Management (ATM) system that achieves decentralized aircraft landing scheduling with acceptable performance whereas a solution to the distributed coordination issues is presented. Finally real-time Monte Carlo flight simulations of multi-aircraft landing scenarios are conducted to evaluate the static and dynamic performance of the aircraft landing scheduling algorithms and operation concepts introduced. Results presented in the dissertation demonstrate that decentralized aircraft landing scheduling at single runway non-controlled airports can be achieved. It is shown from the flight simulations that reasonable performance of decentralized aircraft landing scheduling is achieved with successful integration of publisher/subscriber communication scheme and aircraft landing scheduling model. The extension from the non-controlled airport application to controlled airport case is expected with suitable amendment, where the reliance on centralized air traffic management can be reduced gradually in favor of a decentralized management to provide more airspace capacity, flight flexibility, and increase operation robustness

    Applications of stochastic modeling in air traffic management : Methods, challenges and opportunities for solving air traffic problems under uncertainty

    Get PDF
    In this paper we provide a wide-ranging review of the literature on stochastic modeling applications within aviation, with a particular focus on problems involving demand and capacity management and the mitigation of air traffic congestion. From an operations research perspective, the main techniques of interest include analytical queueing theory, stochastic optimal control, robust optimization and stochastic integer programming. Applications of these techniques include the prediction of operational delays at airports, pre-tactical control of aircraft departure times, dynamic control and allocation of scarce airport resources and various others. We provide a critical review of recent developments in the literature and identify promising research opportunities for stochastic modelers within air traffic management

    Integrated Control of Airport and Terminal Airspace Operations

    Get PDF
    Airports are the most resource-constrained components of the air transportation system. This paper addresses the problems of increased flight delays and aircraft fuel consumption through the integrated control of airport arrival and departure operations. Departure operations are modeled using a network abstraction of the airport surface. Published arrival routes to airports are synthesized to form a realistic model of arrival airspace. The proposed control framework calculates the optimal times of departure of aircraft from the gates, as a function of the arrival and departure traffic as well as airport characteristics such as taxiway layout and gate capacity. The integrated control formulation is solved using dynamic programming, which allows calculation of policies for real-time implementation. The advantages of the proposed methodology are illustrated using simulations of Boston's Logan International Airport.National Science Foundation (U.S.) (0931843

    Investigation, Modeling, and Analysis of Integrated Metroplex Arrival and Departure Coordination Concepts

    Get PDF
    This work involves the development of a concept that enhances integrated metroplex arrival and departure coordination, determines the temporal (the use of time separation for aircraft sharing the same airspace resources) and spatial (the use of different routes or vertical profiles for aircraft streams at any given time) impact of metroplex traffic coordination within the National Airspace System (NAS), and quantifies the benefits of the most desirable metroplex traffic coordination concept. Researching and developing metroplex concepts is addressed in this work that broadly applies across the range of airspace and airport demand characteristics envisioned for NextGen metroplex operations. The objective of this work is to investigate, formulate, develop models, and analyze an operational concept that mitigates issues specific to the metroplex or that takes advantage of unique characteristics of metroplex airports to improve efficiencies. The concept is an innovative approach allowing the NAS to mitigate metroplex interdependencies between airports, optimize metroplex arrival and departure coordination among airports, maximize metroplex airport throughput, minimize delay due to airport runway configuration changes, increase resiliency to disruptions, and increase the tolerance of the system to degrade gracefully under adverse conditions such as weather, traffic management initiatives, and delays in general

    Safety‐oriented discrete event model for airport A‐SMGCS reliability assessment

    Get PDF
    A detailed analysis of State of the Art Technologies and Procedures into Airport Advanced-Surface Movement Guidance and Control Systems has been provided in this thesis, together with the review ofStatistical Monte Carlo Analysis, Reliability Assessment and Petri Nets theories. This practical and theoretical background has lead the author to the conclusion that there is a lack of linkage in between these fields. At the same of time the rapid increasing of Air Traffic all over the world, has brought in evidence the urgent need of practical instruments able to identify and quantify the risks connected with Aircraft operations on the ground, since the Airport has shown to be the actual ‘bottle neck’ of the entire Air Transport System. Therefore, the only winning approach to such a critical matter has to be multi-disciplinary, sewing together apparently different subjects, coming from the most disparate areas of interest and trying to fulfil the gap. The result of this thesis work has come to a start towards the end, when a Timed Coloured Petri Net (TCPN) model of a ‘sample’ Airport A-SMGCS has been developed, that is capable of taking into account different orders of questions arisen during these recent years and tries to give them some good answers. The A-SMGCS Airport model is, in the end, a parametric tool relying on Discrete Event System theory, able to perform a Reliability Analysis of the system itself, that: • uses a Monte Carlo Analysis applied to a Timed Coloured Petri Net, whose purpose is to evaluate the Safety Level of Surface Movements along an Airport • lets the user to analyse the impact of Procedures and Reliability Indexes of Systems such as Surface Movement Radars, Automatic Dependent Surveillance-Broadcast, Airport Lighting Systems, Microwave Sensors, and so on… onto the Safety Level of Airport Aircraft Transport System • not only is a valid instrument in the Design Phase, but it is useful also into the Certifying Activities an in monitoring the Safety Level of the above mentioned System with respect to changes to Technologies and different Procedures.This TCPN model has been verified against qualitative engineering expectations by using simulation experiments and occupancy time schedules generated a priori. Simulation times are good, and since the model has been written into Simulink/Stateflow programming language, it can be compiled to run real-time in C language (Real-time workshop and Stateflow Coder), thus relying on portable code, able to run virtually on any platform, giving even better performances in terms of execution time. One of the most interesting applications of this work is the estimate, for an Airport, of the kind of A-SMGCS level of implementation needed (Technical/Economical convenience evaluation). As a matter of fact, starting from the Traffic Volume and choosing the kind of Ground Equipment to be installed, one can make predictions about the Safety Level of the System: if the value is compliant with the TLS required by ICAO, the A-SMGCS level of Implementation is sufficiently adequate. Nevertheless, even if the Level of Safety has been satisfied, some delays due to reduced or simplified performances (even if Safety is compliant) of some of the equipment (e.g. with reference to False Alarm Rates) can lead to previously unexpected economical consequences, thus requiring more accurate systems to be installed, in order to meet also Airport economical constraints. Work in progress includes the analysis of the effect of weather conditions and re-sequencing of a given schedule. The effect of re-sequencing a given schedule is not yet enough realistic since the model does not apply inter arrival and departure separations. However, the model might show some effect on different sequences based on runway occupancy times. A further developed model containing wake turbulence separation conditions would be more sensitive for this case. Hence, further work will be directed towards: • The development of On-Line Re-Scheduling based on the available actual runway/taxiway configuration and weather conditions. • The Engineering Safety Assessment of some small Italian Airport A-SMGCSs (Model validation with real data). • The application of Stochastic Differential Equations systems in order to evaluate the collision risk on the ground inside the Place alone on the Petri Net, in the event of a Short Term Conflict Alert (STCA), by adopting Reich Collision Risk Model. • Optimal Air Traffic Control Algorithms Synthesis (Adaptive look-ahead Optimization), by Dynamically Timed Coloured Petri Nets, together with the implementation of Error-Recovery Strategies and Diagnosis Functions

    An efficient ant colony system based on receding horizon control for the aircraft arrival sequencing and scheduling problem

    Get PDF
    The aircraft arrival sequencing and scheduling (ASS) problem is a salient problem in air traffic control (ATC), which proves to be nondeterministic polynomial (NP) hard. This paper formulates the ASS problem in the form of a permutation problem and proposes a new solution framework that makes the first attempt at using an ant colony system (ACS) algorithm based on the receding horizon control (RHC) to solve it. The resultant RHC-improved ACS algorithm for the ASS problem (termed the RHC-ACS-ASS algorithm) is robust, effective, and efficient, not only due to that the ACS algorithm has a strong global search ability and has been proven to be suitable for these kinds of NP-hard problems but also due to that the RHC technique can divide the problem with receding time windows to reduce the computational burden and enhance the solution's quality. The RHC-ACS-ASS algorithm is extensively tested on the cases from the literatures and the cases randomly generated. Comprehensive investigations are also made for the evaluation of the influences of ACS and RHC parameters on the performance of the algorithm. Moreover, the proposed algorithm is further enhanced by using a two-opt exchange heuristic local search. Experimental results verify that the proposed RHC-ACS-ASS algorithm generally outperforms ordinary ACS without using the RHC technique and genetic algorithms (GAs) in solving the ASS problems and offers high robustness, effectiveness, and efficienc
    corecore