64,976 research outputs found
A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery
International audienceCathode structure plays a vital role in lithium-air battery for that it can provide space for discharged products accommodation and free path for oxygen, e− and Li+ transport. However, pore blockage, cathode passivation and degradation all result in low discharge rates and poor cycling capability. To get rid of these predicaments, a novel highly conductive dual pore carbon aerogel based air cathode is fabricated to construct a lithium-air battery, which exhibits 18 to 525 cycles in the LiTFSI/sulfolane electrolyte at a current density varying from 1.00 mA cm−2 to 0.05 mA cm−2, accompanied by a high energy efficiency of 78.32%. We postulate that the essence lies in that the as-prepared air cathode inventively create a suitable tri-phase boundary reaction zone, facilitating oxygen and Li+ diffusion in two independant pore channels, thus realizing a relative higher discharge rate capability, lower pore blockage and cathode passivation. Further, pore structure, carbon loading, rate capability, discharge depth and the air's effect are exploited and coordinated, targeting for a high power and reversible lithium-air battery. Such nano-porous carbon aerogel air cathode of novel dual pore structure and material design is expected to be an attractive alternative for lithium-air batteries and other lithium based batteries
Recommended from our members
Capacity loss of non-aqueous Li-Air battery due to insoluble product formation: Approximate solution and experimental validation
In this paper, we present a study of Lithium (Li)-air battery capacity by accounting for the voltage loss associated with the electrode passivation and transport resistance caused by insoluble product formation. Two regimes are defined, in which approximate formulas are developed to explicitly evaluate the battery capacity, along with extensive validation against experimental data of various cathode properties and materials from our and several other groups. The dependence of battery capacity on the surface coverage factor, tortuosity, and Damköhler numbers (Da) is explicitly expressed and discussed. The formulas provide a guideline for experimentalists and practitioners in air cathode design, analysis, and control
Entropy generation analysisfor the design optimizationof solid oxide fuel cells
Purpose - The aim of this paper is to investigate performance improvements of a monolithic solid oxide fuel cell geometry through an entropy generation analysis. Design/methodology/approach - The analysis of entropy generation rates makes it possible to identify the phenomena that cause the main irreversibilities in the fuel cell, to understand their causes and to propose changes in the design and operation of the system. The various contributions to entropy generation are analyzed separately in order to identify which geometrical parameters should be considered as the independent variables in the optimization procedure. The local entropy generation rates are obtained through 3D numerical calculations, which account for the heat, mass, momentum, species and current transport. The system is then optimized in order to minimize the overall entropy generation and increase efficiency. Findings - In the optimized geometry, the power density is increased by about 10 per cent compared to typical designs. In addition, a 20 per cent reduction in the fuel cell volume can be achieved with less than a 1 per cent reduction in the power density with respect to the optimal design. Research limitations/implications - The physical model is based on a simple composition of the reactants, which also implies that no chemical reactions (water gas shift, methane steam reforming, etc.) take place in the fuel cell. Nevertheless, the entire procedure could be applied in the case of different gas compositions. Practical implications - Entropy generation analysis allows one to identify the geometrical parameters that are expected to play important roles in the optimization process and thus to reduce the free independent variables that have to be considered. This information may also be used for design improvement purposes. Originality/value - In this paper, entropy generation analysis is used for a multi-physics problem that involves various irreversible terms, with the double use of this physical quantity: as a guide to select the most relevant design geometrical quantities to be modified and as objective function to be minimized in the optimization proces
Intermediate temperature SOFC single cell test using Nd1.95NiO4+δ as cathode
This work deals with SOFC single cell tests using neodymium nickelate Nd1.95NiO4+δ as cathode material. This MIEC oxide exhibits high values of both surface exchange coefficient (k) and oxygen diffusion coefficient (D*), as well as high electronic conductivity, which result in an enhanced electrochemical activity with respect to classical materials. The SOFC cells were fabricated from an anode-supported electrolyte half-cell provided by InDEC B.V. Corporation, with a 36mmdiameter. The Nd1.95NiO4+δ cathode was prepared as a two-stage electrode consisting of a thin interlayer of several hundred nanometers covered by a thicker layer of dozens microns. The Nd1.95NiO4+δ oxide powders were synthesized using different routes in order to reduce the final annealing temperature, and to subsequently obtain submicronic powders. I–V characteristics of the single cells were investigated under hydrogen–air conditions. The power densities versus current densities curves are reported and the results of impedance spectroscopy measurements performed under these operating conditions are discussed
Effects of Bulk and Surface Conductivity on the Performance of CdZnTe Pixel Detectors
We studied the effects of bulk and surface conductivity on the performance of
high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize
the difference in mechanisms of the bulk and surface conductivity as indicated
by their different temperature behaviors. In addition, the existence of a thin
(10-100 A) oxide layer on the surface of CZT, formed during the fabrication
process, affects both bulk and surface leakage currents. We demonstrate that
the measured I-V dependencies of bulk current can be explained by considering
the CZT detector as a metal-semiconductor-metal system with two back-to-back
Schottky-barrier contacts. The high surface leakage current is apparently due
to the presence of a low-resistivity surface layer that has characteristics
which differ considerably from those of the bulk material. This surface layer
has a profound effect on the charge collection efficiency in detectors with
multi-contact geometry; some fraction of the electric field lines originated on
the cathode intersects the surface areas between the pixel contacts where the
charge produced by an ionizing particle gets trapped. To overcome this effect
we place a grid of thin electrodes between the pixel contacts; when the grid is
negatively biased, the strong electric field in the gaps between the pixels
forces the electrons landing on the surface to move toward the contacts,
preventing the charge loss. We have investigated these effects by using CZT
pixel detectors indium bump bonded to a custom-built VLSI readout chip
Modeling Nucleation and Growth of Zinc Oxide During Discharge of Primary Zinc-Air Batteries
Metal-air batteries are among the most promising next-generation energy
storage devices. Relying on abundant materials and offering high energy
densities, potential applications lie in the fields of electro-mobility,
portable electronics, and stationary grid applications. Now, research on
secondary zinc-air batteries is revived, which are commercialized as primary
hearing aid batteries. One of the main obstacles for making zinc-air batteries
rechargeable is their poor lifetime due to the degradation of alkaline
electrolyte in contact with atmospheric carbon dioxide. In this article, we
present a continuum theory of a commercial Varta PowerOne button cell. Our
model contains dissolution of zinc and nucleation and growth of zinc oxide in
the anode, thermodynamically consistent electrolyte transport in porous media,
and multi-phase coexistance in the gas diffusion electrode. We perform
electrochemical measurements and validate our model. Excellent agreement
between theory and experiment is found and novel insights into the role of zinc
oxide nucleation and growth and carbon dioxide dissolution for discharge and
lifetime is presented. We demonstrate the implications of our work for the
development of rechargeable zinc-air batteries.Comment: 16 pages, 8 figures, Supplementary Information uploaded as ancillary
fil
Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure
In this work we are going to perform a simulation of a wire-cylinder-plate
positive corona discharge in nitrogen gas, and compare our results with already
published experimental results in air for the same structure. We have chosen to
simulate this innovative geometry because it has been established
experimentally that it can generate a thrust per unit electrode length
transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind
top velocity in the range of 8-9 m/s in air. In our model, the used ion source
is a small diameter wire, which generates a positive corona discharge in
nitrogen gas directed to the ground electrode, after which the generated
positive ions are further accelerated in the acceleration channel between the
ground and cathode. By applying the fluid dynamic and electrostatic theories
all hydrodynamic and electrostatic forces that act on the considered geometries
will be computed in an attempt to theoretically confirm the generated ion wind
profile and also the thrust per unit electrode length. These results are
important to establish the validity of this simulation tool for the future
study and development of this effect for practical purposes.Comment: 11 pages, 7 figures, 2 tables, submitted for publication. arXiv admin
note: substantial text overlap with arXiv:1102.425
A Comparison of Fick and Maxwell-Stefan Diffusion Formulations in PEMFC Cathode Gas Diffusion Layers
This paper explores the mathematical formulations of Fick and Maxwell-Stefan
diffusion in the context of polymer electrolyte membrane fuel cell cathode gas
diffusion layers. Formulations of diffusion combined with mass-averaged Darcy
flow are considered for three component gases. Fick formulations can be
considered as approximations of Maxwell-Stefan in a certain sense. For this
application, the formulations can be compared computationally in a simple, one
dimensional setting. We observe that the predictions of the formulations are
very similar, despite their seemingly different structure. Analytic insight is
given to the result. In addition, it is seen that for both formulations,
diffusion laws are small perturbations from bulk flow. The work is also
intended as a reference to multi-component gas diffusion formulations in the
fuel cell setting.Comment: 12 pages, submitted to the Journal of Power Source
- …
