1,007,051 research outputs found
Properties and functions of organic materials in poor agricultural soil condition
A field experiment was conducted under different soil strata in poor agricultural soil condition. Each soil stratum was treated separately with different organic material for soil fertility management. These organic materials are cow dung, sheep dung, goat dung, donkey dung, rice husks, millet husks, Acacia albida, Acacia nilotica, wood ash, house refuses, and combination of all ‘ani-cro-ber’. In the first assessment, soil structure, texture, colour, consistency, bulk density were determined in the field, while in the second assessment N, P, K, Na, Ca, OC, OM and pH were determined under specific laboratory analysis. It is believed that the use of organic materials in soil management is a good way to improve and maintain soil quality and soil fertility rehabilitation in poor agricultural soil condition
Modeling carbon biogeochemistry in agricultural soils
An existing model of C and N dynamics in soils was supplemented with a plant growth submodel and cropping practice routines (fertilization, irrigation, tillage, crop rotation, and manure amendments) to study the biogeochemistry of soil carbon in arable lands. The new model was validated against field results for short-term (1–9 years) decomposition experiments, the seasonal pattern of soil CO2 respiration, and long-term (100 years) soil carbon storage dynamics. A series of sensitivity runs investigated the impact of varying agricultural practices on soil organic carbon (SOC) sequestration. The tests were simulated for corn (maize) plots over a range of soil and climate conditions typical of the United States. The largest carbon sequestration occurred with manure additions; the results were very sensitive to soil texture (more clay led to greater sequestration). Increased N fertilization generally enhanced carbon sequestration, but the results were sensitive to soil texture, initial soil carbon content, and annual precipitation. Reduced tillage also generally (but not always) increased SOC content, though the results were very sensitive to soil texture, initial SOC content, and annual precipitation. A series of long-term simulations investigated the SOC equilibrium for various agricultural practices, soil and climate conditions, and crop rotations. Equilibrium SOC content increased with decreasing temperatures, increasing clay content, enhanced N fertilization, manure amendments, and crops with higher residue yield. Time to equilibrium appears to be one hundred to several hundred years. In all cases, equilibration time was longer for increasing SOC content than for decreasing SOC content. Efforts to enhance carbon sequestration in agricultural soils would do well to focus on those specific areas and agricultural practices with the greatest potential for increasing soil carbon content
Use of soil and climate data to assess the risk of agricultural drought for policy support in Europe.
This paper describes the use of soil and climatic data for assessing the risk of drought in Europe. Soil moisture regimes are defined for soil classification purposes and these can be used to delineate areas with the same type of soil climate. Maps showing the distribution of arid soils in USA and dry areas in Southern Europe are presented. In the case of agricultural drought, it is the soil water available to plants (SWAP) that is the most important soil factor in assessing this risk and a simple model for estimating this is described. This model can be linked to spatial and point data from the European Soil Database. In the absence of sufficient soil water retention measurements, preliminary maps of SWAP in Europe have been produced using pedotransfer rules. The study concludes that basic soil maps can be used to identify some areas where agricultural drought is likely to be a problem. However more precise modelling of droughtiness, based on interactions of soil available water with the average soil moisture deficit, estimated from meteorological data, is needed, to support policy making today
Phytoextraction of phosphorus for ecological restoration: application of soil additives
The European Habitats Directive urges the European member states to take measures for maintaining and restoring natural habitats. In Flanders (Belgium) and the Netherlands, the surface area of nature reserves is intended to be enlarged with 38 000 ha and 150 000 ha, respectively, what is mainly to be realised on former agricultural land. In order to restore species rich nature habitats on former agricultural land, it is crucial to decrease the availability of nutrients and a limitation for plant growth by at least one nutrient should be ensured. The former fertilization of P in the agricultural context results in an immense P pool fixated to the soil and this is one of the main problems hindering the ecological restoration. We focus on an alternative restoration method, the phytoextraction of P, also P-mining. This is the deprivation of soil P with a crop with high P-use efficiency and non-P fertilization. This method allows the gradual transition from agricultural land use towards nature management. Up until now there have only been estimations of the P-mining duration time from the initial phase of the mining-process.
In order to estimate the P-extraction over time the experiments take place on a soil-P-chronosequence. A controlled pot experiment was set up with soil from three former agricultural sites with different soil-P-levels, Lolium perenne was sown and chemical and biological compounds were added to enhance the bioavailability of P for plant-uptake. The additives used were two concentrations of humic acids, phosphorus solubilising bacteria and arbuscular mycorrhizal fungi. Largest effects of the soil additions on the biomass production were measured in the lowest soil-P-level. Limitation by P in the Mid and Low P soils was very pronounced. The phytoextraction of P will slow down with soil P level decreasing in time. The effect of the soil additions is discussed
Soil quality evaluation under agro-silvo-pastoral Mediterranean management systems
According to Franzluebber (2002) the degree of stratification of soil organic C and N, as well as other parameters, with soil depth, expressed as a ratio, can indicate soil quality or soil ecosystem functioning and sustainability under different agricultural management. Stratification ratios > 2 indicate a higher soil quality and contribution to agriculture sustainability. A case study from northeastern Sardinia (Italy) is presented
DOC trail: soil organic matter quality and soil aggregate stability in organic and conventional soils
Conclusion
Soil organic matter quality is affected by the agricultural systems of the DOC trial. System effects on the chemical composition, however, were smaller than those on the living organisms in soil and their functions. A close correlation was found between soil structure and microbial biomass indicating that microbes are playing an important role in soil structural stability
- …
