619 research outputs found
Putative ancient microorganisms from amber nuggets
Evolutionary microbiology studies based on the isolation of ancient DNA and/or microbial samples are scarce due to the difficulty of finding well preserved biological specimens. However, amber is a fossil resin with natural preserving properties for microbial cells and DNA. The visualization by transmission electron microscopy of different microorganismlike specimens found in amber nuggets from both the Miocene and the Cretaceous periods was accompanied by studies of ancient DNA obtained from the nuggets. After the design of specific primers based on the present sequences of both genes in Saccharomyces cerevisiae, the ancestral AGP2 sequence from the Miocene, as well as the 18S rRNA from the Cretaceous, were amplified. [Int Microbiol 2007; 10(2):117-122
Metal phosphides as potential thermoelectric materials
There still exists a crucial need for new thermoelectric materials to efficiently recover waste heat as electrical energy. Although metal phosphides are stable and can exhibit excellent electronic properties, they have traditionally been overlooked as thermoelectrics due to expectations of displaying high thermal conductivity. Based on high-throughput computational screening of the electronic properties of over 48 000 inorganic compounds, we find that several metal phosphides offer considerable promise as thermoelectric materials, with excellent potential electronic properties (e.g. due to multiple valley degeneracy). In addition to the electronic band structure, the phonon dispersion curves of various metal phosphides were computed indicating low-frequency acoustic modes that could lead to low thermal conductivity. Several metal phosphides exhibit promising thermoelectric properties. The computed electronic and thermal properties were compared to experiments to test the reliability of the calculations indicating that the predicted thermoelectric properties are semi-quantitative. As a complete experimental study of the thermoelectric properties in MPs, cubic-NiP2 was synthesized and the low predicted lattice thermal conductivity (∼1.2 W m^(−1) K^(−1) at 700 K) was confirmed. The computed Seebeck coefficient is in agreement with experiments over a range of temperatures and the phononic dispersion curve of c-NiP_2 is consistent with the experimental heat capacity. The predicted high thermoelectric performance in several metal phosphides and the low thermal conductivity measured in NiP_2 encourage further investigations of thermoelectric properties of metal phosphides
Personality, emotion and mood simulation in decision making
In this paper is proposed the integration of personality, emotion and mood aspects for a group of participants in a decision-making negotiation process. The aim is to simulate the participant behavior in that scenario. The personality is modeled through the OCEAN five-factor model of personality (Openness, Conscientiousness, Extraversion, Agreeableness and Negative emotionality). The emotion model applied to the participants is the OCC (Ortony, Clore and Collins) that defines several criteria representing the human emotional structure. In order to integrate personality and emotion is used the pleasure-arousal-dominance (PAD) model of mood
Participation of Candida albicans transcription factor Rlm1 in cell wall biogenesis and virulence
Candida albicans cell wall is important for growth and interaction with the environment. RLM1 is one of the putative transcription factors involved in the cell wall integrity pathway, which plays an important role in the maintenance of the cell wall integrity. In this work we investigated the involvement of RLM1 in the cell wall biogenesis and in virulence. Newly constructed C. albicans Δ/Δrlm1 mutants showed typical cell wall weakening phenotypes, such as hypersensitivity to Congo Red, Calcofluor White, and caspofungin (phenotype reverted in the presence of sorbitol), confirming the involvement of RLM1 in the cell wall integrity. Additionally, the cell wall of C. albicans Δ/Δrlm1 showed a significant increase in chitin (213%) and reduction in mannans (60%), in comparison with the wild-type, results that are consistent with cell wall remodelling. Microarray analysis in the absence of any stress showed that deletion of RLM1 in C. albicans significantly down-regulated genes involved in carbohydrate catabolism such as DAK2, GLK4, NHT1 and TPS1, up-regulated genes involved in the utilization of alternative carbon sources, like AGP2, SOU1, SAP6, CIT1 or GAL4, and genes involved in cell adhesion like ECE1, ALS1, ALS3, HWP1 or RBT1. In agreement with the microarray results adhesion assays showed an increased amount of adhering cells and total biomass in the mutant strain, in comparison with the wild-type. C. albicans mutant Δ/Δrlm1 strain was also found to be less virulent than the wild-type and complemented strains in the murine model of disseminated candidiasis. Overall, we showed that in the absence of RLM1 the modifications in the cell wall composition alter yeast interaction with the environment, with consequences in adhesion ability and virulence. The gene expression findings suggest that this gene participates in the cell wall biogenesis, with the mutant rearranging its metabolic pathways to allow the use of alternative carbon sources.This work was supported by CBMA (Centre of Molecular and Environmental Biology) through the FCT (Fundacao para a Ciencia e Tecnologia) project PEst-C/BIA/UI4050/2011. Yolanda Delgado-Silva was supported by an ALbAN scholarship (No E07D400922PE), and Alexandra Correia by SFRH/BD/31354/2006 fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Functional Commitment Schemes: From Polynomial Commitments to Pairing-Based Accumulators from Simple Assumptions
International audienceWe formalize a cryptographic primitive called functional commitment (FC) which can be viewed as a generalization of vector commitments (VCs), polynomial commitments and many other special kinds of commitment schemes. A non-interactive functional commitment allows committing to a message in such a way that the committer has the flexibility of only revealing a function F (M) of the committed message during the opening phase. We provide constructions for the functionality of linear functions, where messages consist of a vectors of n elements over some domain D (e.g., m = (m_1,. .. , m_n) ∈ D_n) and commitments can later be opened to a specific linear function of the vector coordinates. An opening for a function F : D_n → R thus generates a witness for the fact that F (m) indeed evaluates to y ∈ R. One security requirement is called function binding and requires that no adversary be able to open a commitment to two different evaluations y, y for the same function F. We propose a construction of functional commitment for linear functions based on constant-size assumptions in composite order groups endowed with a bilinear map. The construction has commitments and openings of constant size (i.e., independent of n or function description) and is perfectly hiding – the underlying message is information theoretically hidden. Our security proofs builds on the Déjà Q framework of Chase and Meiklejohn (Eurocrypt 2014) and its extension by Wee (TCC 2016) to encryption primitives, thus relying on constant-size subgroup decisional assumptions. We show that the FC for linear functions are sufficiently powerful to solve four open problems. They, first, imply polynomial commitments, and, then, give cryptographic accumulators (i.e., an algebraic hash function which makes it possible to efficiently prove that some input belongs to a hashed set). In particular, specializing our FC construction leads to the first pairing-based polynomial commitments and accumulators for large universes known to achieve security under simple assumptions. We also substantially extend our pairing-based accumulator to handle subset queries which requires a non-trivial extension of the Déjà Q framework
Study of wine tartaric salt stabilization by addition of carboxymethylcellulose (CMC). Comparison with the « protective colloïds » effect
Aims : Inhibition of potassium hydrogen tartrate (KHT) crystallization by carboxymethylcellulose (CMC) is tested in a model solution and in wines. Tartaric acid salt crystallization risk is assessed by computing the supersaturation, saturation temperature and excess KHT with respect to the saturation equilibrium using MEXTAR® (Mesure de l’EXces de TARtre) software. Materials and results : Firstly, the time for crystals to appear was recorded by monitoring the conductivity in a model solution and in a wine, and the inhibition ratio was computed. At 11,5 °C, 0,5 mg.L-1 CMC inhibited KHT crystallization. The inhibitory effect increased exponentially with increasing CMC concentration and was several times greater than that of polysaccharides and polyphenols, the protective colloids in wine (Gerbaud et al., 1997). At 2 °C, 30 mg.L-1 CMC had the same inhibitory effect than 10 mg.L-1 at 11.5°C.Secondly, 20 red and white wines were refrigerated for 3 weeks at -4 °C with CMC or metatartaric acid. Results show that the addition of 20 mg.L-1 CMC has an inhibitory effect at least equivalent to 100 mg.L-1 metatartaric acid. Furthermore, for 10 wines preheated for 8 days at 30 °C and then refrigerated for 2 months at 0 °C, 5 and 20 mg. L-1 CMC maintains its inhibitory efficiency, unlike metatartaric acid which is hydrolysed Significance and impact of the study : The OIV-OENO 366-2009 and OIV-OENO 02/2008 resolutions recently authorized the use of CMC to prevent tartaric acid salt precipitation. With no impact on health, and stable under heating and in acid solution, CMC is an efficient candidate for tartaric stabilization. The optimal concentration of 20 mg.L-1 (2 g.hL-1) should however be adapted to local wine storage conditions and KHT crystallization risk
The D-ring, Not the A-ring, Rotates in Synechococcus OS-B' Phytochrome
Phytochrome photoreceptors in plants and microorganisms switch photochromically between two states, controlling numerous important biological processes. Although this phototransformation is generally considered to involve rotation of ring D of the tetrapyrrole chromophore, Ulijasz et al. (Ulijasz, A. T., Cornilescu, G., Cornilescu, C. C., Zhang, J., Rivera, M., Markley, J. L., and Vierstra, R. D. (2010) Nature 463, 250–254) proposed that the A-ring rotates instead. Here, we apply magic angle spinning NMR to the two parent states following studies of the 23-kDa GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domain fragment of phytochrome from Synechococcus OS-B′. Major changes occur at the A-ring covalent linkage to the protein as well as at the protein residue contact of ring D. Conserved contacts associated with the A-ring nitrogen rule out an A-ring photoflip, whereas loss of contact of the D-ring nitrogen to the protein implies movement of ring D. Although none of the methine bridges showed a chemical shift change comparable with those characteristic of the D-ring photoflip in canonical phytochromes, denaturation experiments showed conclusively that the same occurs in Synechococcus OS-B′ phytochrome upon photoconversion. The results are consistent with the D-ring being strongly tilted in both states and the C15=C16 double bond undergoing a Z/E isomerization upon light absorption. More subtle changes are associated with the A-ring linkage to the protein. Our findings thus disprove A-ring rotation and are discussed in relation to the position of the D-ring, photoisomerization, and photochromicity in the phytochrome family
- …
