6 research outputs found

    Agnostic System Identification for Model-Based Reinforcement Learning

    Full text link
    A fundamental problem in control is to learn a model of a system from observations that is useful for controller synthesis. To provide good performance guarantees, existing methods must assume that the real system is in the class of models considered during learning. We present an iterative method with strong guarantees even in the agnostic case where the system is not in the class. In particular, we show that any no-regret online learning algorithm can be used to obtain a near-optimal policy, provided some model achieves low training error and access to a good exploration distribution. Our approach applies to both discrete and continuous domains. We demonstrate its efficacy and scalability on a challenging helicopter domain from the literature.Comment: 8 pages, published in ICML 201

    The Utility of Abstaining in Binary Classification

    Full text link
    We explore the problem of binary classification in machine learning, with a twist - the classifier is allowed to abstain on any datum, professing ignorance about the true class label without committing to any prediction. This is directly motivated by applications like medical diagnosis and fraud risk assessment, in which incorrect predictions have potentially calamitous consequences. We focus on a recent spate of theoretically driven work in this area that characterizes how allowing abstentions can lead to fewer errors in very general settings. Two areas are highlighted: the surprising possibility of zero-error learning, and the fundamental tradeoff between predicting sufficiently often and avoiding incorrect predictions. We review efficient algorithms with provable guarantees for each of these areas. We also discuss connections to other scenarios, notably active learning, as they suggest promising directions of further inquiry in this emerging field.Comment: Short surve

    Bandits with Temporal Stochastic Constraints

    Full text link
    We study the effect of impairment on stochastic multi-armed bandits and develop new ways to mitigate it. Impairment effect is the phenomena where an agent only accrues reward for an action if they have played it at least a few times in the recent past. It is practically motivated by repetition and recency effects in domains such as advertising (here consumer behavior may require repeat actions by advertisers) and vocational training (here actions are complex skills that can only be mastered with repetition to get a payoff). Impairment can be naturally modelled as a temporal constraint on the strategy space, and we provide two novel algorithms that achieve sublinear regret, each working with different assumptions on the impairment effect. We introduce a new notion called bucketing in our algorithm design, and show how it can effectively address impairment as well as a broader class of temporal constraints. Our regret bounds explicitly capture the cost of impairment and show that it scales (sub-)linearly with the degree of impairment. Our work complements recent work on modeling delays and corruptions, and we provide experimental evidence supporting our claims.Comment: An extended abstract appeared in the 4th Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2019

    Learning by Repetition: Stochastic Multi-armed Bandits under Priming Effect

    Full text link
    We study the effect of persistence of engagement on learning in a stochastic multi-armed bandit setting. In advertising and recommendation systems, repetition effect includes a wear-in period, where the user's propensity to reward the platform via a click or purchase depends on how frequently they see the recommendation in the recent past. It also includes a counteracting wear-out period, where the user's propensity to respond positively is dampened if the recommendation was shown too many times recently. Priming effect can be naturally modelled as a temporal constraint on the strategy space, since the reward for the current action depends on historical actions taken by the platform. We provide novel algorithms that achieves sublinear regret in time and the relevant wear-in/wear-out parameters. The effect of priming on the regret upper bound is also additive, and we get back a guarantee that matches popular algorithms such as the UCB1 and Thompson sampling when there is no priming effect. Our work complements recent work on modeling time varying rewards, delays and corruptions in bandits, and extends the usage of rich behavior models in sequential decision making settings.Comment: Appears in the 36th Conference on Uncertainty in Artificial Intelligence (UAI 2020

    Active Online Learning with Hidden Shifting Domains

    Full text link
    Online machine learning systems need to adapt to domain shifts. Meanwhile, acquiring label at every timestep is expensive. We propose a surprisingly simple algorithm that adaptively balances its regret and its number of label queries in settings where the data streams are from a mixture of hidden domains. For online linear regression with oblivious adversaries, we provide a tight tradeoff that depends on the durations and dimensionalities of the hidden domains. Our algorithm can adaptively deal with interleaving spans of inputs from different domains. We also generalize our results to non-linear regression for hypothesis classes with bounded eluder dimension and adaptive adversaries. Experiments on synthetic and realistic datasets demonstrate that our algorithm achieves lower regret than uniform queries and greedy queries with equal labeling budget

    24th Annual Conference on Learning Theory Agnostic KWIK learning and efficient approximate reinforcement learning

    No full text
    A popular approach in reinforcement learning is to use a model-based algorithm, i.e., an algorithm that utilizes a model learner to learn an approximate model to the environment. It has been shown that such a model-based learner is efficient if the model learner is efficient in the so-called “knows what it knows ” (KWIK) framework. A major limitation of the standard KWIK framework is that, by its very definition, it covers only the case when the (model) learner can represent the actual environment with no errors. In this paper, we study the agnostic KWIK learning model, where we relax this assumption by allowing nonzero approximation errors. We show that with the new definition an efficient model learner still leads to an efficient reinforcement learning algorithm. At the same time, though, we find that learning within the new framework can be substantially slower as compared to the standard framework, even in the case of simple learning problems. Keywords: KWIK learning, agnostic learning, reinforcement learning, PAC-MDP 1
    corecore