318 research outputs found

    Assessing Capabilities of the High Energy Liquid Laser Area Defense System through Combat Simulations

    Get PDF
    High Energy Laser (HEL) technology continues to improve and its place in the battlefield is ever evolving. By combining the high energy delivery of solid state laser technology with the efficient thermal management of liquid laser technology, HELLADS has two main advantages over any HEL predecessors. One, the configuration is small and light enough to be carried on more tactical aircraft such as fighters. Two, the thermal management greatly increases HEL fire power by increasing dwell time on target. To assess HELLADS operational capabilities the test community has been challenged with how to effectively examine the advantages and limitations through a cost effective manner. Modeling and simulation supports this assessment as it yields itself easily to relatively low cost and robust testing methodologies. The challenge comes with building credible models through validation and verification of test parameters and scenarios. An Air Force Standard Analysis Toolkit model, the Extended Air Defense Simulation Model (EADSIM), is used in this study to meet these challenges. This research effort focuses on the assessment of the HELLADS operational capabilities through EADSIM. Of particular interest is the investigation of the envisioned HELLADS operational envelope and the potential advantages it offers over other HEL systems. Scenarios are applied to represent the Homeland Defense arena in which HELLADS is proposed to operate. Specifically this study explores what factors impact HELLADS effectiveness and suitability in the Homeland Defense scenarios examined

    Summer 2008 Full Issue

    Get PDF

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Tradespace and Affordability – Phase 2

    Get PDF
    MOTIVATION AND CONTEXT: One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering – “SE Transformation.” The Grand Challenge goal for SE Transformation is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, outside-in, document-driven, point-solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, balanced outside-in and inside-out, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    Air Force Institute of Technology Research Report 2016

    Get PDF
    This Research Report presents the FY16 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs)

    Counter Unmanned Aircraft Systems Technologies and Operations

    Get PDF
    As the quarter-century mark in the 21st Century nears, new aviation-related equipment has come to the forefront, both to help us and to haunt us. (Coutu, 2020) This is particularly the case with unmanned aerial vehicles (UAVs). These vehicles have grown in popularity and accessible to everyone. Of different shapes and sizes, they are widely available for purchase at relatively low prices. They have moved from the backyard recreation status to important tools for the military, intelligence agencies, and corporate organizations. New practical applications such as military equipment and weaponry are announced on a regular basis – globally. (Coutu, 2020) Every country seems to be announcing steps forward in this bludgeoning field. In our successful 2nd edition of Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets (Nichols, et al., 2019), the authors addressed three factors influencing UAS phenomena. First, unmanned aircraft technology has seen an economic explosion in production, sales, testing, specialized designs, and friendly / hostile usages of deployed UAS / UAVs / Drones. There is a huge global growing market and entrepreneurs know it. Second, hostile use of UAS is on the forefront of DoD defense and offensive planners. They are especially concerned with SWARM behavior. Movies like “Angel has Fallen,” where drones in a SWARM use facial recognition technology to kill USSS agents protecting POTUS, have built the lore of UAS and brought the problem forefront to DHS. Third, UAS technology was exploding. UAS and Counter- UAS developments in navigation, weapons, surveillance, data transfer, fuel cells, stealth, weight distribution, tactics, GPS / GNSS elements, SCADA protections, privacy invasions, terrorist uses, specialized software, and security protocols has exploded. (Nichols, et al., 2019) Our team has followed / tracked joint ventures between military and corporate entities and specialized labs to build UAS countermeasures. As authors, we felt compelled to address at least the edge of some of the new C-UAS developments. It was clear that we would be lucky if we could cover a few of – the more interesting and priority technology updates – all in the UNCLASSIFIED and OPEN sphere. Counter Unmanned Aircraft Systems: Technologies and Operations is the companion textbook to our 2nd edition. The civilian market is interesting and entrepreneurial, but the military and intelligence markets are of concern because the US does NOT lead the pack in C-UAS technologies. China does. China continues to execute its UAS proliferation along the New Silk Road Sea / Land routes (NSRL). It has maintained a 7% growth in military spending each year to support its buildup. (Nichols, et al., 2019) [Chapter 21]. They continue to innovate and have recently improved a solution for UAS flight endurance issues with the development of advanced hydrogen fuel cell. (Nichols, et al., 2019) Reed and Trubetskoy presented a terrifying map of countries in the Middle East with armed drones and their manufacturing origin. Guess who? China. (A.B. Tabriski & Justin, 2018, December) Our C-UAS textbook has as its primary mission to educate and train resources who will enter the UAS / C-UAS field and trust it will act as a call to arms for military and DHS planners.https://newprairiepress.org/ebooks/1031/thumbnail.jp

    United States Air Force Applications of Unmanned Aerial Systems (UAS): A Delphi Study to Examine Current and Future UAS Autonomous Mission Capabilities

    Get PDF
    As UAS technology continues to grow and enable increased autonomous capabilities, acquisition and operational decision makers must determine paths to pursue for existing and emerging mission areas. The DoD has published a number of 25-year unmanned systems integration roadmaps (USIR) to describe future capabilities and challenges. However, these roadmaps have lacked distinguishable stakeholder perspectives. Following the USIRs concept, this research focused on UAS autonomy through the lens of UAS subject matter experts (SMEs). We used the Delphi method with SMEs from USAF communities performing day-to-day operations, acquisitions, and research in UAS domains to forecast mission capabilities over the next 20 years; specifically, within the context of increased UAS autonomous capabilities. Through two rounds of questions, the study provided insight to the capabilities SMEs viewed as most important and likely to be incorporated as well as how different stakeholders view the many challenges and opportunities autonomy present for future missions

    Air Force Institute of Technology Research Report 2013

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    U.S Naval Strategy in the 1990\u27s

    Get PDF
    The decade of the 1990s represents a distinctive period in American naval strategic thinking. Bounded on one side by the end of the Cold War in 1989-91 and on the other by the beginning of the era of the global war on terrorism after 11 September 2001, these were years in which the U.S. Navy of the 1990s found itself faced with a dramatically altered strategic situation. For the first time in at least four decades, the U.S. Navy had neither a peer nor a superior naval adversary; further, no credible naval adversary could be discerned in the foreseeable future.https://digital-commons.usnwc.edu/usnwc-newport-papers/1026/thumbnail.jp
    • …
    corecore