11,522 research outputs found

    D-STREAMON: from middlebox to distributed NFV framework for network monitoring

    Full text link
    Many reasons make NFV an attractive paradigm for IT security: lowers costs, agile operations and better isolation as well as fast security updates, improved incident responses and better level of automation. On the other side, the network threats tend to be increasingly complex and distributed, implying huge traffic scale to be monitored and increasingly strict mitigation delay requirements. Considering the current trend of the net- working and the requirements to counteract to the evolution of cyber-threats, it is expected that also network monitoring will move towards NFV based solutions. In this paper, we present D- StreaMon an NFV-capable distributed framework for network monitoring realized to face the above described challenges. It relies on the StreaMon platform, a solution for network monitoring originally designed for traditional middleboxes. An evolution path which migrates StreaMon from middleboxes to Virtual Network Functions (VNFs) has been realized.Comment: Short paper at IEEE LANMAN 2017. arXiv admin note: text overlap with arXiv:1608.0137

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Evolving a software development methodology for commercial ICTD projects

    Get PDF
    This article discusses the evolution of a “DistRibuted Agile Methodology Addressing Technical Ictd in Commercial Settings” (DRAMATICS) that was developed in a global software corporation to support ICTD projects from initial team setup through ICT system design, development, and prototyping, to scaling up and transitioning, to sustainable commercial models. We developed the methodology using an iterative Action Research approach in a series of commercial ICTD projects over a period of more than six years. Our learning is reflected in distinctive methodology features that support the development of contextually adapted ICT systems, collaboration with local partners, involvement of end users in design, and the transition from research prototypes to scalable, long-term solutions. We offer DRAMATICS as an approach that others can appropriate and adapt to their particular project contexts. We report on the methodology evolution and provide evidence of its effectiveness in the projects where it has been used

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Don't Repeat Yourself: Seamless Execution and Analysis of Extensive Network Experiments

    Full text link
    This paper presents MACI, the first bespoke framework for the management, the scalable execution, and the interactive analysis of a large number of network experiments. Driven by the desire to avoid repetitive implementation of just a few scripts for the execution and analysis of experiments, MACI emerged as a generic framework for network experiments that significantly increases efficiency and ensures reproducibility. To this end, MACI incorporates and integrates established simulators and analysis tools to foster rapid but systematic network experiments. We found MACI indispensable in all phases of the research and development process of various communication systems, such as i) an extensive DASH video streaming study, ii) the systematic development and improvement of Multipath TCP schedulers, and iii) research on a distributed topology graph pattern matching algorithm. With this work, we make MACI publicly available to the research community to advance efficient and reproducible network experiments
    • …
    corecore