51,966 research outputs found

    Safety-Critical Systems and Agile Development: A Mapping Study

    Full text link
    In the last decades, agile methods had a huge impact on how software is developed. In many cases, this has led to significant benefits, such as quality and speed of software deliveries to customers. However, safety-critical systems have widely been dismissed from benefiting from agile methods. Products that include safety critical aspects are therefore faced with a situation in which the development of safety-critical parts can significantly limit the potential speed-up through agile methods, for the full product, but also in the non-safety critical parts. For such products, the ability to develop safety-critical software in an agile way will generate a competitive advantage. In order to enable future research in this important area, we present in this paper a mapping of the current state of practice based on {a mixed method approach}. Starting from a workshop with experts from six large Swedish product development companies we develop a lens for our analysis. We then present a systematic mapping study on safety-critical systems and agile development through this lens in order to map potential benefits, challenges, and solution candidates for guiding future research.Comment: Accepted at Euromicro Conf. on Software Engineering and Advanced Applications 2018, Prague, Czech Republi

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    Non-Technical Individual Skills are Weakly Connected to the Maturity of Agile Practices

    Full text link
    Context: Existing knowledge in agile software development suggests that individual competency (e.g. skills) is a critical success factor for agile projects. While assuming that technical skills are important for every kind of software development project, many researchers suggest that non-technical individual skills are especially important in agile software development. Objective: In this paper, we investigate whether non-technical individual skills can predict the use of agile practices. Method: Through creating a set of multiple linear regression models using a total of 113 participants from agile teams in six software development organizations from The Netherlands and Brazil, we analyzed the predictive power of non-technical individual skills in relation to agile practices. Results: The results show that there is surprisingly low power in using non-technical individual skills to predict (i.e. explain variance in) the mature use of agile practices in software development. Conclusions: Therefore, we conclude that looking at non-technical individual skills is not the optimal level of analysis when trying to understand, and explain, the mature use of agile practices in the software development context. We argue that it is more important to focus on the non-technical skills as a team-level capacity instead of assuring that all individuals possess such skills when understanding the use of the agile practices.Comment: 18 pages, 1 figur

    Keeping Continuous Deliveries Safe

    Full text link
    Allowing swift release cycles, Continuous Delivery has become popular in application software development and is starting to be applied in safety-critical domains such as the automotive industry. These domains require thorough analysis regarding safety constraints, which can be achieved by formal verification and the execution of safety tests resulting from a safety analysis on the product. With continuous delivery in place, such tests need to be executed with every build to ensure the latest software still fulfills all safety requirements. Even more though, the safety analysis has to be updated with every change to ensure the safety test suite is still up-to-date. We thus propose that a safety analysis should be treated no differently from other deliverables such as source-code and dependencies, formulate guidelines on how to achieve this and advert areas where future research is needed.Comment: 4 pages, 3 figure
    corecore