24 research outputs found

    Integrating Agile Practices with Plan-Driven Medical Device Software Development

    Get PDF
    The popularity of Agile software development is growing rapidly with an increasing number of projects being developed following Agile methodologies such as Scrum and XP [1]. Research has revealed that following Agile practices when developing software can have a significantly positive impact in reducing development time, reducing cost and increasing overall quality [2-4]. Whilst Agile practices can have a positive impact on a development project there are incompatibilities between Agile methodologies and the plan driven approaches followed when developing safety critical software [5, 6]. However, it has been recognised that “formal techniques may be used in an agile way” [5]. Case studies have been performed in organisations developing safety critical software which validate this statement [7-9]. This Ph.D. is focusing on the area of medical device software development and integrating Agile software development principles into traditional plan driven lifecycles for use in developing medical device software

    Safety-Critical Systems and Agile Development: A Mapping Study

    Full text link
    In the last decades, agile methods had a huge impact on how software is developed. In many cases, this has led to significant benefits, such as quality and speed of software deliveries to customers. However, safety-critical systems have widely been dismissed from benefiting from agile methods. Products that include safety critical aspects are therefore faced with a situation in which the development of safety-critical parts can significantly limit the potential speed-up through agile methods, for the full product, but also in the non-safety critical parts. For such products, the ability to develop safety-critical software in an agile way will generate a competitive advantage. In order to enable future research in this important area, we present in this paper a mapping of the current state of practice based on {a mixed method approach}. Starting from a workshop with experts from six large Swedish product development companies we develop a lens for our analysis. We then present a systematic mapping study on safety-critical systems and agile development through this lens in order to map potential benefits, challenges, and solution candidates for guiding future research.Comment: Accepted at Euromicro Conf. on Software Engineering and Advanced Applications 2018, Prague, Czech Republi

    Challenges Experienced by Medical Device Software Organisations while following a Plan-driven SDLC

    Get PDF
    Medical device software organisations face challenges not faced by generic software development organisations. These challenges include the adherence to regulatory controls. Regulatory bodies require medical device software organisations to provide objective evidence that the software they are developing is safe and reliable. To produce this, regulatory bodies require a number of deliverables which must be achieved. However, they do not dictate which Software Development Life Cycle (SDLC) must be followed in order to achieve these deliverables. Despite not dictating which SDLC must be followed when developing medical device software, organisations typically develop their software in accordance with a Plan-Driven software development lifecycle. By conducting semi structured interviews with seven medical device software organisations, we gained a deeper insight into how the challenges experienced impact on the development of medical device software. The interviews also attempted to learn from the participants how they believe the challenges experienced can be overcome. The aim of this paper is to explain the methodology used to perform interviews with medical device software organisations and to present these interviews

    Adopting Agile Practices When Developing Software for Use in the Medical Domain

    Get PDF
    Non-safety critical software developers have been reaping the benefits of adopting agile practices for a number of years. However, developers of safety critical software often have concerns about adopting agile practices. Through performing a literature review, this research has identified the perceived barriers to following agile practices when developing medical device software. A questionnaire based survey was also conducted with medical device software developers in Ireland to determine the barriers to adopting agile practices. The survey revealed that half of the respondents develop software in accordance with a plan driven software development lifecycle and that they believe that there are a number of perceived barriers to adopting agile practices when developing regulatory compliant software such as: being contradictory to regulatory requirements; insufficient coverage of risk management activities and the lack of up-front planning. In addition, a comparison is performed between the perceived and actual barriers. Based upon the findings of the literature review and survey, it emerged that no external barriers exist to adopting agile practices when developing medical device software and the barriers that do exists are internal barriers such as getting stakeholder buy in

    Integrating Agile Practices with a Medical Device SDLC.

    Get PDF
    The rate at which agile software development practices are being adopted is growing rapidly. Agile software development practices and methodologies appear to offer the silver bullet which can solve the problems associated with following plan driven software development lifecycles. Agile software development practices offer the possibility of achieving lower development costs, increased efficiency and improved software quality. However, there is currently a low rate of publicly available information that suggests there is widespread adoption of agile practices within the medical device software domain. This is largely due to the fact that software developed for medical devices includes challenges not faced when developing non safety critical software. As a result of these challenges, medical device software is typically developed using plan driven software development lifecycles. However, such lifecycles are quite rigid and cannot accommodate changes easily. Previous research has revealed that medical device software development projects can benefit from adopting agile practices whilst still maintaining the discipline associated with following plan driven development lifecycles. This paper outlines the challenges faced by developers when developing medical device software and how shortcomings in both agile and plan driven approaches can be resolved by following a mixed method approach to medical device software developmen

    Understanding the Benefits of Agile Software Development in Regulated Environments

    Get PDF
    Agile software development has become increasingly popular in recent years. Applying agile methods, companies expect flexible planning, early delivery of the software product, and a continuous improvement of the development process itself. However, in regulated environments the use of agile development is not yet common practice. In such environments, various regulatory requirements apply which affect the software development process. This paper examines the use of agile software development in the regulated medical device industry and explores reasons for using agile methods although their use is limited. We interviewed agile software development teams in three different companies using semi-structured interviews. Using grounded theory methodology, we identify reasons why companies are using agile methods, even though problems and barriers exist. Our main achievement is the development of four categories, which describe the benefit of agile software development in regulated environments. These categories are master complexity, reduce effort, improve usability, and promote collaboration

    An Agile V-Model for Medical Device Software Development to Overcome the Challenges with Plan Driven SDLCs

    Get PDF
    Through the use of semi structured interviews with medical device software organizations it emerged that medical device software organizations are experiencing difficulties when following plan driven Software Development Life Cycles (SDLC), particularly in the area of requirements management. To attempt to resolve these issues an examination of the non-regulated industry was performed to determine if lessons learned there could be applied to the development of medical device software. This examination revealed that agile methods are being widely adopted in the non-regulated software industry. To learn if agile methods could be adopted when developing medical device software a mapping study was performed which looked for instances of where agile methods have been used in regulated industries and where they have been adopted, to what success. This mapping study revealed that incorporating agile practices with the existing plan driven SDLC is the most favourable choice for medical device software organizations. This research aims to develop a SDLC which has a foundation of a plan driven SDLC which incorporates agile practices which can be followed when developing regulatory compliant software

    The Impact of Regulatory Changes on the Development of Mobile Medical Apps

    Get PDF
    Mobile applications are being used to perform a wide variety of tasks in day-to-day life ranging from checking email, to controlling your home heating. Application developers have recognized the potential to transform a smart device into a medical device, by using a mobile medical application i.e. a mobile phone or a tablet. When initially conceived these mobile medical applications performed basic functions e.g. BMI calculator, accessing reference material etc.; however, increasing complexity offers clinicians and patients a range of functionality. As this complexity and functionality increases, so too does the potential risk associated with using such an application. Examples include any applications that provide the ability to inflate and deflate blood pressure cuffs, as well as applications that use patient-specific parameters and calculate dosage or create a dosage, plan for radiation therapy. If an unapproved mobile medical application is marketed by a medical device organization, then they face significant penalties such as receiving an FDA warning letter to cease the prohibited activity, fines and possibly face criminal conviction. Regulatory bodies have finalized guidance intended for mobile application developers to establish if their applications are subject to regulatory scrutiny. However, regulatory controls appear contradictory with the approaches taken by mobile application developers who generally work with short development cycles and very little documentation and as such, there is the potential to stifle further improvements due to these regulations. The research presented as part of this paper details how by adopting development techniques such as agile software development, mobile medical application developers can meet regulatory requirements whilst still fostering innovation

    Adopting Agile Practices when Developing Medical Device Software

    Get PDF
    Agile methods are gaining momentum amongst the developers of non-safety critical software. They offer the ability to improve development time, increase quality and reduce development costs. Despite this, the rate of adoption of agile methods within safety critical domains remains low. On face value agile methods appear to be contradictory to regulatory requirements. However while they may appear contradictory, they align on key values such as the development of the highest quality software. To demonstrate that agile methods could in fact be adopted when developing regulatory compliant software they were implemented on a medical device software development project. This implementation showed that not only can agile methods be successfully followed, but it also revealed that benefits were acquired. For example, the medical device software development project was completed 7% faster when following agile methods, when compared to if it had been completed in accordance with a plan-driven approach. While this implementation is confined to a single project, within a single organization it does strengthen the belief that adopting agile methods within regulated domains can reap the same benefits as those acquired in non-safety critical domains
    corecore