53,468 research outputs found

    Constructing a Virtual Training Laboratory Using Intelligent Agents

    No full text
    This paper reports on the results and experiences of the Trilogy project; a collaborative project concerned with the development of a virtual research laboratory using intelligence agents. This laboratory is designed to support the training of research students in telecommunications traffic engineering. Training research students involves a number of basic activities. They may seek guidance from, or exchange ideas with, more experienced colleagues. High quality academic papers, books and research reports provide a sound basis for developing and maintaining a good understanding of an area of research. Experimental tools enable new ideas to be evaluated, and hypotheses tested. These three components-collaboration, information and experimentation- are central to any research activity, and a good training environment for research should integrate them in a seamless fashion. To this end, we describe the design and implementation of an agent-based virtual laboratory

    Recertification and Reentry to Practice for Nurse Anesthetists: Determining Core Competencies and Evaluating Performance via High-Fidelity Simulation Technology

    Get PDF
    Introduction The National Board of Certification and Recertification for Nurse Anesthetistsaddressed a barrier to return to practice of uncertified practitioners by replacing required direct patient care experiences with high-fidelity simulation. Objectives The aims of this study were to: (a) validate a set of clinical activities for their relevance to reentry and determine if they could be replicated using simulation, (b) evaluate the content validity of an existing simulation scenario containing the proposed clinical activities and determine its substitutability for a clinical practicum, and (c) evaluate the validity of two methods to assess simulation performance. Methods A modified Delphi method incorporating an autonomous, anonymous, three-round online survey process using three unique expert certified registered nurse anesthetists groups was used to address each study aim. Results Twenty-seven clinical activities gained consensus as necessary to be assessed in the simulation. All 14 survey questions used to determine simulation content validity exceeded the minimum content validity index (CVI) value of 0.78, with a mean CVI of 0.99. The global rating scale CVI and the competency checklist CVI were 0.83 and 1.0, respectively. Conclusion The findings add to the existing literature supporting the utility of simulation for high-stakes provider assessment and certification

    A Case for Cooperative and Incentive-Based Coupling of Distributed Clusters

    Full text link
    Research interest in Grid computing has grown significantly over the past five years. Management of distributed resources is one of the key issues in Grid computing. Central to management of resources is the effectiveness of resource allocation as it determines the overall utility of the system. The current approaches to superscheduling in a grid environment are non-coordinated since application level schedulers or brokers make scheduling decisions independently of the others in the system. Clearly, this can exacerbate the load sharing and utilization problems of distributed resources due to suboptimal schedules that are likely to occur. To overcome these limitations, we propose a mechanism for coordinated sharing of distributed clusters based on computational economy. The resulting environment, called \emph{Grid-Federation}, allows the transparent use of resources from the federation when local resources are insufficient to meet its users' requirements. The use of computational economy methodology in coordinating resource allocation not only facilitates the QoS based scheduling, but also enhances utility delivered by resources.Comment: 22 pages, extended version of the conference paper published at IEEE Cluster'05, Boston, M

    A differential game approach to urban drainage systems control

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Urban drainage systems (UDSs) are complex large-scale systems that carry stormwater and wastewater throughout urban areas. During heavy rain scenarios, UDSs are not able to handle the amount of extra water that enters the network and flooding occurs. Usually, this might happen because the network is not being used efficiently, i.e., some structures remain underused while many others are overused. This paper proposes a control methology based on differential game theory that aims to efficiently use the existing network elements in order to minimize overflows and properly manage the water resource. The proposed controller is tested on a typical UDS and is compared with a centralized MPC achieving similar results in terms of flooding minimization and network usage, but only using local information on distributed controllers.Peer ReviewedPostprint (author's final draft
    corecore