14,283 research outputs found

    The dynamics of iterated transportation simulations

    Full text link
    Iterating between a router and a traffic micro-simulation is an increasibly accepted method for doing traffic assignment. This paper, after pointing out that the analytical theory of simulation-based assignment to-date is insufficient for some practical cases, presents results of simulation studies from a real world study. Specifically, we look into the issues of uniqueness, variability, and robustness and validation. Regarding uniqueness, despite some cautionary notes from a theoretical point of view, we find no indication of ``meta-stable'' states for the iterations. Variability however is considerable. By variability we mean the variation of the simulation of a given plan set by just changing the random seed. We show then results from three different micro-simulations under the same iteration scenario in order to test for the robustness of the results under different implementations. We find the results encouraging, also when comparing to reality and with a traditional assignment result. Keywords: dynamic traffic assignment (DTA); traffic micro-simulation; TRANSIMS; large-scale simulations; urban planningComment: 24 pages, 7 figure

    Towards a Testbed for Dynamic Vehicle Routing Algorithms

    Get PDF
    Since modern transport services are becoming more flexible, demand-responsive, and energy/cost efficient, there is a growing demand for large-scale microscopic simulation platforms in order to test sophisticated routing algorithms. Such platforms have to simulate in detail, not only the dynamically changing demand and supply of the relevant service, but also traffic flow and other relevant transport services. This paper presents the DVRP extension to the open-source MATSim simulator. The extension is designed to be highly general and customizable to simulate a wide range of dynamic rich vehicle routing problems. The extension allows plugging in of various algorithms that are responsible for continuous re-optimisation of routes in response to changes in the system. The DVRP extension has been used in many research and commercial projects dealing with simulation of electric and autonomous taxis, demand-responsive transport, personal rapid transport, free-floating car sharing and parking search

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Fast community structure local uncovering by independent vertex-centred process

    Get PDF
    This paper addresses the task of community detection and proposes a local approach based on a distributed list building, where each vertex broadcasts basic information that only depends on its degree and that of its neighbours. A decentralised external process then unveils the community structure. The relevance of the proposed method is experimentally shown on both artificial and real data.Comment: 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Aug 2015, Paris, France. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Minin

    Design choices for agent-based control of AGVs in the dough making process

    Get PDF
    In this paper we consider a multi-agent system (MAS) for the logistics control of Automatic Guided Vehicles (AGVs) that are used in the dough making process at an industrial bakery. Here, logistics control refers to constructing robust schedules for all transportation jobs. The paper discusses how alternative MAS designs can be developed and compared using cost, frequency of messages between agents, and computation time for evaluating control rules as performance indicators. Qualitative design guidelines turn out to be insufficient to select the best agent architecture. Therefore, we also use simulation to support decision making, where we use real-life data from the bakery to evaluate several alternative designs. We find that architectures in which line agents initiate allocation of transportation jobs, and AGV agents schedule multiple jobs in advance, perform best. We conclude by discussing the benefits of our MAS systems design approach for real-life applications

    LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent Reinforcement Learning

    Full text link
    Cooperative multi-agent reinforcement learning (MARL) has made prominent progress in recent years. For training efficiency and scalability, most of the MARL algorithms make all agents share the same policy or value network. However, in many complex multi-agent tasks, different agents are expected to possess specific abilities to handle different subtasks. In those scenarios, sharing parameters indiscriminately may lead to similar behavior across all agents, which will limit the exploration efficiency and degrade the final performance. To balance the training complexity and the diversity of agent behavior, we propose a novel framework to learn dynamic subtask assignment (LDSA) in cooperative MARL. Specifically, we first introduce a subtask encoder to construct a vector representation for each subtask according to its identity. To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy, which can dynamically group agents with similar abilities into the same subtask. In this way, agents dealing with the same subtask share their learning of specific abilities and different subtasks correspond to different specific abilities. We further introduce two regularizers to increase the representation difference between subtasks and stabilize the training by discouraging agents from frequently changing subtasks, respectively. Empirical results show that LDSA learns reasonable and effective subtask assignment for better collaboration and significantly improves the learning performance on the challenging StarCraft II micromanagement benchmark and Google Research Football

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore