30,913 research outputs found

    A Simulation Framework for Fast Design Space Exploration of Unmanned Air System Traffic Management Policies

    Full text link
    The number of daily small Unmanned Aircraft Systems (sUAS) operations in uncontrolled low altitude airspace is expected to reach into the millions. UAS Traffic Management (UTM) is an emerging concept aiming at the safe and efficient management of such very dense traffic, but few studies are addressing the policies to accommodate such demand and the required ground infrastructure in suburban or urban environments. Searching for the optimal air traffic management policy is a combinatorial optimization problem with intractable complexity when the number of sUAS and the constraints increases. As the demands on the airspace increase and traffic patterns get complicated, it is difficult to forecast the potential low altitude airspace hotspots and the corresponding ground resource requirements. This work presents a Multi-agent Air Traffic and Resource Usage Simulation (MATRUS) framework that aims for fast evaluation of different air traffic management policies and the relationship between policy, environment and resulting traffic patterns. It can also be used as a tool to decide the resource distribution and launch site location in the planning of a next-generation smart city. As a case study, detailed comparisons are provided for the sUAS flight time, conflict ratio, cellular communication resource usage, for a managed (centrally coordinated) and unmanaged (free flight) traffic scenario.Comment: The Integrated Communications Navigation and Surveillance (ICNS) Conference in 201

    Nonlinear Model Predictive Control for Multi-Micro Aerial Vehicle Robust Collision Avoidance

    Full text link
    Multiple multirotor Micro Aerial Vehicles sharing the same airspace require a reliable and robust collision avoidance technique. In this paper we address the problem of multi-MAV reactive collision avoidance. A model-based controller is employed to achieve simultaneously reference trajectory tracking and collision avoidance. Moreover, we also account for the uncertainty of the state estimator and the other agents position and velocity uncertainties to achieve a higher degree of robustness. The proposed approach is decentralized, does not require collision-free reference trajectory and accounts for the full MAV dynamics. We validated our approach in simulation and experimentally.Comment: Video available on: https://www.youtube.com/watch?v=Ot76i9p2ZZo&t=40

    A Scalable Low-Cost-UAV Traffic Network (uNet)

    Full text link
    This article proposes a new Unmanned Aerial Vehicle (UAV) operation paradigm to enable a large number of relatively low-cost UAVs to fly beyond-line-of-sight without costly sensing and communication systems or substantial human intervention in individual UAV control. Under current free-flight-like paradigm, wherein a UAV can travel along any route as long as it avoids restricted airspace and altitudes. However, this requires expensive on-board sensing and communication as well as substantial human effort in order to ensure avoidance of obstacles and collisions. The increased cost serves as an impediment to the emergence and development of broader UAV applications. The main contribution of this work is to propose the use of pre-established route network for UAV traffic management, which allows: (i) pre- mapping of obstacles along the route network to reduce the onboard sensing requirements and the associated costs for avoiding such obstacles; and (ii) use of well-developed routing algorithms to select UAV schedules that avoid conflicts. Available GPS-based navigation can be used to fly the UAV along the selected route and time schedule with relatively low added cost, which therefore, reduces the barrier to entry into new UAV-applications market. Finally, this article proposes a new decoupling scheme for conflict-free transitions between edges of the route network at each node of the route network to reduce potential conflicts between UAVs and ensuing delays. A simulation example is used to illustrate the proposed uNet approach.Comment: To be submitted to journal, 21 pages, 9 figure
    • …
    corecore