353,559 research outputs found

    Projective simulation with generalization

    Full text link
    The ability to generalize is an important feature of any intelligent agent. Not only because it may allow the agent to cope with large amounts of data, but also because in some environments, an agent with no generalization capabilities cannot learn. In this work we outline several criteria for generalization, and present a dynamic and autonomous machinery that enables projective simulation agents to meaningfully generalize. Projective simulation, a novel, physical approach to artificial intelligence, was recently shown to perform well in standard reinforcement learning problems, with applications in advanced robotics as well as quantum experiments. Both the basic projective simulation model and the presented generalization machinery are based on very simple principles. This allows us to provide a full analytical analysis of the agent's performance and to illustrate the benefit the agent gains by generalizing. Specifically, we show that already in basic (but extreme) environments, learning without generalization may be impossible, and demonstrate how the presented generalization machinery enables the projective simulation agent to learn.Comment: 14 pages, 9 figure

    A Study on the Parallelization of Terrain-Covering Ant Robots Simulations

    Get PDF
    Agent-based simulation is used as a tool for supporting (time-critical) decision making in differentiated contexts. Hence, techniques for speeding up the execution of agent-based models, such as Parallel Discrete Event Simulation (PDES), are of great relevance/benefit. On the other hand, parallelism entails that the final output provided by the simulator should closely match the one provided by a traditional sequential run. This is not obvious given that, for performance and efficiency reasons, parallel simulation engines do not allow the evaluation of global predicates on the simulation model evolution with arbitrary time-granularity along the simulation time-Axis. In this article we present a study on the effects of parallelization of agent-based simulations, focusing on complementary aspects such as performance and reliability of the provided simulation output. We target Terrain Covering Ant Robots (TCAR) simulations, which are useful in rescue scenarios to determine how many agents (i.e., robots) should be used to completely explore a certain terrain for possible victims within a given time. © 2014 Springer-Verlag Berlin Heidelberg

    Projective simulation for artificial intelligence

    Get PDF
    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.Comment: 22 pages, 18 figures. Close to published version, with footnotes retaine

    An Agent-Based Spatially Explicit Epidemiological Model in MASON

    Get PDF
    This paper outlines the design and implementation of an agent-based epidemiological simulation system. The system was implemented in the MASON toolkit, a set of Java-based agent-simulation libraries. This epidemiological simulation system is robust and extensible for multiple applications, including classroom demonstrations of many types of epidemics and detailed numerical experimentation on a particular disease. The application has been made available as an applet on the MASON web site, and as source code on the author\'s web site.Epidemiology, Social Networks, Agent-Based Simulation, MASON Toolkit
    corecore