16,807 research outputs found

    Finding Faces in Cluttered Scenes using Random Labeled Graph Matching

    Get PDF
    An algorithm for locating quasi-frontal views of human faces in cluttered scenes is presented. The algorithm works by coupling a set of local feature detectors with a statistical model of the mutual distances between facial features it is invariant with respect to translation, rotation (in the plane), and scale and can handle partial occlusions of the face. On a challenging database with complicated and varied backgrounds, the algorithm achieved a correct localization rate of 95% in images where the face appeared quasi-frontally

    MASCOT: a mechanism for attention-based scale-invariant object recognition in images

    Get PDF
    The efficient management of large multimedia databases requires the development of new techniques to process, characterize, and search for multimedia objects. Especially in the case of image data, the rapidly growing amount of documents prohibits a manual description of the images’ content. Instead, the automated characterization is highly desirable to support annotation and retrieval of digital images. However, this is a very complex and still unsolved task. To contribute to a solution of this problem, we have developed a mechanism for recognizing objects in images based on the query by example paradigm. Therefore, the most salient image features of an example image representing the searched object are extracted to obtain a scale-invariant object model. The use of this model provides an efficient and robust strategy for recognizing objects in images independently of their size. Further applications of the mechanism are classical recognition tasks such as scene decomposition or object tracking in video sequences

    Iris Recognition Using Scattering Transform and Textural Features

    Full text link
    Iris recognition has drawn a lot of attention since the mid-twentieth century. Among all biometric features, iris is known to possess a rich set of features. Different features have been used to perform iris recognition in the past. In this paper, two powerful sets of features are introduced to be used for iris recognition: scattering transform-based features and textural features. PCA is also applied on the extracted features to reduce the dimensionality of the feature vector while preserving most of the information of its initial value. Minimum distance classifier is used to perform template matching for each new test sample. The proposed scheme is tested on a well-known iris database, and showed promising results with the best accuracy rate of 99.2%

    On the use of SIFT features for face authentication

    Get PDF
    Several pattern recognition and classification techniques have been applied to the biometrics domain. Among them, an interesting technique is the Scale Invariant Feature Transform (SIFT), originally devised for object recognition. Even if SIFT features have emerged as a very powerful image descriptors, their employment in face analysis context has never been systematically investigated. This paper investigates the application of the SIFT approach in the context of face authentication. In order to determine the real potential and applicability of the method, different matching schemes are proposed and tested using the BANCA database and protocol, showing promising results

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm
    • …
    corecore