5 research outputs found

    Affective Speech Recognition

    Get PDF
    Speech, as a medium of interaction, carries two different streams of information. Whereas one stream carries explicit messages, the other one contains implicit information about speakers themselves. Affective speech recognition is a set of theories and tools that intend to automate unfolding the part of the implicit stream that has to do with humans emotion. Application of affective speech recognition is to human computer interaction; a machine that is able to recognize humans emotion could engage the user in a more effective interaction. This thesis proposes a set of analyses and methodologies that advance automatic recognition of affect from speech. The proposed solution spans two dimensions of the problem: speech signal processing, and statistical learning. At the speech signal processing dimension, extraction of speech low-level descriptors is dis- cussed, and a set of descriptors that exploit the spectrum of the signal are proposed, which have shown to be particularly practical for capturing affective qualities of speech. Moreover, consider- ing the non-stationary property of the speech signal, further proposed is a measure of dynamicity that captures that property of speech by quantifying changes of the signal over time. Furthermore, based on the proposed set of low-level descriptors, it is shown that individual human beings are different in conveying emotions, and that parts of the spectrum that hold the affective information are different from one person to another. Therefore, the concept of emotion profile is proposed that formalizes those differences by taking into account different factors such as cultural and gender-specific differences, as well as those distinctions that have to do with individual human beings. At the statistical learning dimension, variable selection is performed to identify speech features that are most imperative to extracting affective information. In doing so, low-level descriptors are distinguished from statistical functionals, therefore, effectiveness of each of the two are studied dependently and independently. The major importance of variable selection as a standalone component of a solution is to real-time application of affective speech recognition. Although thousands of speech features are commonly used to tackle this problem in theory, extracting that many features in a real-time manner is unrealistic, especially for mobile applications. Results of the conducted investigations show that the required number of speech features is far less than the number that is commonly used in the literature of the problem. At the core of an affective speech recognition solution is a statistical model that uses speech features to recognize emotions. Such a model comes with a set of parameters that are estimated through a learning process. Proposed in this thesis is a learning algorithm, developed based on the notion of Hilbert-Schmidt independence criterion and named max-dependence regression, that maximizes the dependence between predicted and actual values of affective qualities. Pearson’s correlation coefficient is commonly used as the measure of goodness of a fit in the literature of affective computing, therefore max-dependence regression is proposed to make the learning and hypothesis testing criteria consistent with one another. Results of this research show that doing so results in higher prediction accuracy. Lastly, sparse representation for affective speech datasets is considered in this thesis. For this purpose, the application of a dictionary learning algorithm based on Hilbert-Schmidt independence criterion is proposed. Dictionary learning is used to identify the most important bases of the data in order to improve the generalization capability of the proposed solution to affective speech recognition. Based on the dictionary learning approach of choice, fusion of feature vectors is proposed. It is shown that sparse representation leads to higher generalization capability for affective speech recognition

    A speaker classification framework for non-intrusive user modeling : speech-based personalization of in-car services

    Get PDF
    Speaker Classification, i.e. the automatic detection of certain characteristics of a person based on his or her voice, has a variety of applications in modern computer technology and artificial intelligence: As a non-intrusive source for user modeling, it can be employed for personalization of human-machine interfaces in numerous domains. This dissertation presents a principled approach to the design of a novel Speaker Classification system for automatic age and gender recognition which meets these demands. Based on literature studies, methods and concepts dealing with the underlying pattern recognition task are developed. The final system consists of an incremental GMM-SVM supervector architecture with several optimizations. An extensive data-driven experiment series explores the parameter space and serves as evaluation of the component. Further experiments investigate the language-independence of the approach. As an essential part of this thesis, a framework is developed that implements all tasks associated with the design and evaluation of Speaker Classification in an integrated development environment that is able to generate efficient runtime modules for multiple platforms. Applications from the automotive field and other domains demonstrate the practical benefit of the technology for personalization, e.g. by increasing local danger warning lead time for elderly drivers.Die Sprecherklassifikation, also die automatische Erkennung bestimmter Merkmale einer Person anhand ihrer Stimme, besitzt eine Vielzahl von Anwendungsmöglichkeiten in der modernen Computertechnik und Künstlichen Intelligenz: Als nicht-intrusive Wissensquelle für die Benutzermodellierung kann sie zur Personalisierung in vielen Bereichen eingesetzt werden. In dieser Dissertation wird ein fundierter Ansatz zum Entwurf eines neuartigen Sprecherklassifikationssystems zur automatischen Bestimmung von Alter und Geschlecht vorgestellt, welches diese Anforderungen erfüllt. Ausgehend von Literaturstudien werden Konzepte und Methoden zur Behandlung des zugrunde liegenden Mustererkennungsproblems entwickelt, welche zu einer inkrementell arbeitenden GMM-SVM-Supervector-Architektur mit diversen Optimierungen führen. Eine umfassende datengetriebene Experimentalreihe dient der Erforschung des Parameterraumes und zur Evaluierung der Komponente. Weitere Studien untersuchen die Sprachunabhängigkeit des Ansatzes. Als wesentlicher Bestandteil der Arbeit wird ein Framework entwickelt, das alle im Zusammenhang mit Entwurf und Evaluierung von Sprecherklassifikation anfallenden Aufgaben in einer integrierten Entwicklungsumgebung implementiert, welche effiziente Laufzeitmodule für verschiedene Plattformen erzeugen kann. Anwendungen aus dem Automobilbereich und weiteren Domänen demonstrieren den praktischen Nutzen der Technologie zur Personalisierung, z.B. indem die Vorlaufzeit von lokalen Gefahrenwarnungen für ältere Fahrer erhöht wird
    corecore