5 research outputs found

    Acetylcholine neuromodulation in normal and abnormal learning and memory: vigilance control in waking, sleep, autism, amnesia, and Alzheimer's disease

    Get PDF
    This article provides a unified mechanistic neural explanation of how learning, recognition, and cognition break down during Alzheimer's disease, medial temporal amnesia, and autism. It also clarifies whey there are often sleep disturbances during these disorders. A key mechanism is how acetylcholine modules vigilance control in cortical layer

    Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine

    Get PDF
    Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM). Theorems in the 1970's showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP) currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh) can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 ms or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all (WTA) stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners when the network stabilizes

    A neural network model of normal and abnormal learning and memory consolidation

    Get PDF
    The amygdala and hippocampus interact with thalamocortical systems to regulate cognitive-emotional learning, and lesions of amygdala, hippocampus, thalamus, and cortex have different effects depending on the phase of learning when they occur. In examining eyeblink conditioning data, several questions arise: Why is the hippocampus needed for trace conditioning where there is a temporal gap between the conditioned stimulus offset and the onset of the unconditioned stimulus, but not needed for delay conditioning where stimuli temporally overlap and co-terminate? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later have no impact on conditioned behavior? Why do thalamic lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions degrade recent learning but not temporally remote learning? Why do cortical lesions degrade temporally remote learning, and cause amnesia, but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of medial prefrontal cortex? How are mechanisms of motivated attention and the emergent state of consciousness linked during conditioning? How do neurotrophins, notably Brain Derived Neurotrophic Factor (BDNF), influence memory formation and consolidation? A neural model, called neurotrophic START, or nSTART, proposes answers to these questions. The nSTART model synthesizes and extends key principles, mechanisms, and properties of three previously published brain models of normal behavior. These three models describe aspects of how the brain can learn to categorize objects and events in the world; how the brain can learn the emotional meanings of such events, notably rewarding and punishing events, through cognitive-emotional interactions; and how the brain can learn to adaptively time attention paid to motivationally important events, and when to respond to these events, in a context-appropriate manner. The model clarifies how hippocampal adaptive timing mechanisms and BDNF may bridge the gap between stimuli during trace conditioning and thereby allow thalamocortical and corticocortical learning to take place and be consolidated. The simulated data arise as emergent properties of several brain regions interacting together. The model overcomes problems of alternative memory models, notably models wherein memories that are initially stored in hippocampus move to the neocortex during consolidation

    A neural network model of normal and abnormal learning and memory consolidation

    Get PDF
    The amygdala and hippocampus interact with thalamocortical systems to regulate cognitive-emotional learning, and lesions of amygdala, hippocampus, thalamus, and cortex have different effects depending on the phase of learning when they occur. In examining eyeblink conditioning data, several questions arise: Why is the hippocampus needed for trace conditioning where there is a temporal gap between the conditioned stimulus offset and the onset of the unconditioned stimulus, but not needed for delay conditioning where stimuli temporally overlap and co-terminate? Why do amygdala lesions made before or immediately after training decelerate conditioning while those made later have no impact on conditioned behavior? Why do thalamic lesions degrade trace conditioning more than delay conditioning? Why do hippocampal lesions degrade recent learning but not temporally remote learning? Why do cortical lesions degrade temporally remote learning, and cause amnesia, but not recent or post-lesion learning? How is temporally graded amnesia caused by ablation of medial prefrontal cortex? How are mechanisms of motivated attention and the emergent state of consciousness linked during conditioning? How do neurotrophins, notably Brain Derived Neurotrophic Factor (BDNF), influence memory formation and consolidation? A neural model, called neurotrophic START, or nSTART, proposes answers to these questions. The nSTART model synthesizes and extends key principles, mechanisms, and properties of three previously published brain models of normal behavior. These three models describe aspects of how the brain can learn to categorize objects and events in the world; how the brain can learn the emotional meanings of such events, notably rewarding and punishing events, through cognitive-emotional interactions; and how the brain can learn to adaptively time attention paid to motivationally important events, and when to respond to these events, in a context-appropriate manner. The model clarifies how hippocampal adaptive timing mechanisms and BDNF may bridge the gap between stimuli during trace conditioning and thereby allow thalamocortical and corticocortical learning to take place and be consolidated. The simulated data arise as emergent properties of several brain regions interacting together. The model overcomes problems of alternative memory models, notably models wherein memories that are initially stored in hippocampus move to the neocortex during consolidation
    corecore