10,223 research outputs found

    Affine Extensions of Integer Vector Addition Systems with States

    Full text link
    We study the reachability problem for affine Z\mathbb{Z}-VASS, which are integer vector addition systems with states in which transitions perform affine transformations on the counters. This problem is easily seen to be undecidable in general, and we therefore restrict ourselves to affine Z\mathbb{Z}-VASS with the finite-monoid property (afmp-Z\mathbb{Z}-VASS). The latter have the property that the monoid generated by the matrices appearing in their affine transformations is finite. The class of afmp-Z\mathbb{Z}-VASS encompasses classical operations of counter machines such as resets, permutations, transfers and copies. We show that reachability in an afmp-Z\mathbb{Z}-VASS reduces to reachability in a Z\mathbb{Z}-VASS whose control-states grow linearly in the size of the matrix monoid. Our construction shows that reachability relations of afmp-Z\mathbb{Z}-VASS are semilinear, and in particular enables us to show that reachability in Z\mathbb{Z}-VASS with transfers and Z\mathbb{Z}-VASS with copies is PSPACE-complete. We then focus on the reachability problem for affine Z\mathbb{Z}-VASS with monogenic monoids: (possibly infinite) matrix monoids generated by a single matrix. We show that, in a particular case, the reachability problem is decidable for this class, disproving a conjecture about affine Z\mathbb{Z}-VASS with infinite matrix monoids we raised in a preliminary version of this paper. We complement this result by presenting an affine Z\mathbb{Z}-VASS with monogenic matrix monoid and undecidable reachability relation

    Galois Unitaries, Mutually Unbiased Bases, and MUB-balanced states

    Full text link
    A Galois unitary is a generalization of the notion of anti-unitary operators. They act only on those vectors in Hilbert space whose entries belong to some chosen number field. For Mutually Unbiased Bases the relevant number field is a cyclotomic field. By including Galois unitaries we are able to remove a mismatch between the finite projective group acting on the bases on the one hand, and the set of those permutations of the bases that can be implemented as transformations in Hilbert space on the other hand. In particular we show that there exist transformations that cycle through all the bases in every dimension which is an odd power of an odd prime. (For even primes unitary MUB-cyclers exist.) These transformations have eigenvectors, which are MUB-balanced states (i.e. rotationally symmetric states in the original terminology of Wootters and Sussman) if and only if d = 3 modulo 4. We conjecture that this construction yields all such states in odd prime power dimension.Comment: 32 pages, 2 figures, AMS Latex. Version 2: minor improvements plus a few additional reference

    Superstring Theory on pp Waves with ADE Geometries

    Full text link
    We study the BMN correspondence between certain Penrose limits of type IIB superstrings on pp-wave orbifolds with ADEADE geometries, and the set of four-dimensional N=2\mathcal{N}=2 superconformal field theories constructed as quiver gauge models classified by finite ADEADE Lie algebras and affine ADE^\hat{ADE} Kac-Moody algebras. These models have 16 preserved supercharges and are based on systems of D3-branes and wrapped D5- and D7-branes. We derive explicitly the metrics of these pp-wave orbifolds and show that the BMN extension requires, in addition to D5-D5 open strings in bi-fundamental representations, D5-D7 open strings involving orientifolds with Sp(N)Sp(N) gauge symmetry. We also give the correspondence rule between leading string states and gauge-invariant operators in the N=2\mathcal{N}=2 quiver gauge models.Comment: 62 page

    Standard and Non-standard Extensions of Lie algebras

    Full text link
    We study the problem of quadruple extensions of simple Lie algebras. We find that, adding a new simple root α+4\alpha_{+4}, it is not possible to have an extended Kac-Moody algebra described by a Dynkin-Kac diagram with simple links and no loops between the dots, while it is possible if α+4\alpha_{+4} is a Borcherds imaginary simple root. We also comment on the root lattices of these new algebras. The folding procedure is applied to the simply-laced triple extended Lie algebras, obtaining all the non-simply laced ones. Non- standard extension procedures for a class of Lie algebras are proposed. It is shown that the 2-extensions of E8E_{8}, with a dot simply linked to the Dynkin-Kac diagram of E9E_{9}, are rank 10 subalgebras of E10E_{10}. Finally the simple root systems of a set of rank 11 subalgebras of E11E_{11}, containing as sub-algebra E10E_{10}, are explicitly written.Comment: Revised version. Inaccurate statements corrected. Expanded version with added reference

    Integer Vector Addition Systems with States

    Full text link
    This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ZVASS) and extensions and restrictions thereof. A ZVASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ZVASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ZVASS while retaining NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure

    Subnormal operators regarded as generalized observables and compound-system-type normal extension related to su(1,1)

    Get PDF
    In this paper, subnormal operators, not necessarily bounded, are discussed as generalized observables. In order to describe not only the information about the probability distribution of the output data of their measurement but also a framework of their implementations, we introduce a new concept compound-system-type normal extension, and we derive the compound-system-type normal extension of a subnormal operator, which is defined from an irreducible unitary representation of the algebra su(1,1). The squeezed states are characterized as the eigenvectors of an operator from this viewpoint, and the squeezed states in multi-particle systems are shown to be the eigenvectors of the adjoints of these subnormal operators under a representation. The affine coherent states are discussed in the same context, as well.Comment: LaTeX with iopart.cls, iopart12.clo, iopams.sty, The previous version has some mistake

    Composable computation in discrete chemical reaction networks

    Full text link
    We study the composability of discrete chemical reaction networks (CRNs) that stably compute (i.e., with probability 0 of error) integer-valued functions f:Nd→Nf:\mathbb{N}^d\to\mathbb{N}. We consider output-oblivious CRNs in which the output species is never a reactant (input) to any reaction. The class of output-oblivious CRNs is fundamental, appearing in earlier studies of CRN computation, because it is precisely the class of CRNs that can be composed by simply renaming the output of the upstream CRN to match the input of the downstream CRN. Our main theorem precisely characterizes the functions ff stably computable by output-oblivious CRNs with an initial leader. The key necessary condition is that for sufficiently large inputs, ff is the minimum of a finite number of nondecreasing quilt-affine functions. (An affine function is linear with a constant offset; a quilt-affine function is linear with a periodic offset)
    • …
    corecore