66,632 research outputs found

    Coexistence of antiferrodistortive and ferroelectric distortions at the PbTiO3_3 (001) surface

    Full text link
    The c(2×\times2) reconstruction of (001) PbTiO3_3 surfaces is studied by means of first principles calculations for paraelectric (non-polar) and ferroelectric ([001] polarized) films. Analysis of the atomic displacements in the near-surface region shows how the surface modifies the antiferrodistortive (AFD) instability and its interaction with ferroelectric (FE) distortions. The effect of the surface is found to be termination dependent. The AFD instability is suppressed at the TiO2_2 termination while it is strongly enhanced, relative to the bulk, at the PbO termination resulting in a c(2x2) surface reconstruction which is in excellent agreement with experiments. We find that, in contrast to bulk PbTiO3_3, in-plane ferroelectricity at the PbO termination does not suppress the AFD instability. The AFD and the in-plane FE distortions are instead concurrently enhanced at the PbO termination. This leads to a novel surface phase with coexisting FE and AFD distortions which is not found in PbTiO3_3 bulk

    Emergence of a Dynamic Super-Structural Order Integrating Antiferroelectric and Antiferrodistortive Competing Instabilities in EuTiO3

    Full text link
    Microscopic structural instabilities of EuTiO3 single crystal were investigated by synchrotron x-ray diffraction. Antiferrodistortive (AFD) oxygen octahedral rotational order was observed alongside Ti derived antiferroelectric (AFE) distortions. The competition between the two instabilities is reconciled through a cooperatively modulated structure allowing both to coexist. The electric and magnetic field effect on the modulated AFD order shows that the origin of large magnetoelectric coupling is based upon the dynamic equilibrium between the AFD - antiferromagnetic interactions versus the electric polarization - ferromagnetic interactions

    Vascular responses of the extremities to transdermal application of vasoactive agents in Caucasian and African descent individuals

    Get PDF
    This is an accepted manuscript of an article published by Springer in European Journal of Applied Physiology on 04/04/2015, available online: https://doi.org/10.1007/s00421-015-3164-2 The accepted version of the publication may differ from the final published version.© 2015, Springer-Verlag Berlin Heidelberg. Purpose: Individuals of African descent (AFD) are more susceptible to non-freezing cold injury than Caucasians (CAU) which may be due, in part, to differences in the control of skin blood flow. We investigated the skin blood flow responses to transdermal application of vasoactive agents. Methods: Twenty-four young males (12 CAU and 12 AFD) undertook three tests in which iontophoresis was used to apply acetylcholine (ACh 1 w/v %), sodium nitroprusside (SNP 0.01 w/v %) and noradrenaline (NA 0.5 mM) to the skin. The skin sites tested were: volar forearm, non-glabrous finger and toe, and glabrous finger (pad) and toe (pad). Results: In response to SNP on the forearm, AFD had less vasodilatation for a given current application than CAU (P = 0.027–0.004). ACh evoked less vasodilatation in AFD for a given application current in the non-glabrous finger and toe compared with CAU (P = 0.043–0.014) with a lower maximum vasodilatation in the non-glabrous finger (median [interquartile], AFD n = 11, 41[234] %, CAU n = 12, 351[451] %, P = 0.011) and non-glabrous toe (median [interquartile], AFD n = 9, 116[318] %, CAU n = 12, 484[720] %, P = 0.018). ACh and SNP did not elicit vasodilatation in the glabrous skin sites of either group. There were no ethnic differences in response to NA. Conclusion: AFD have an attenuated endothelium-dependent vasodilatation in non-glabrous sites of the fingers and toes compared with CAU. This may contribute to lower skin temperature following cold exposure and the increased risk of cold injuries experienced by AFD.Published versio

    The effect of ethnicity on the vascular responses to cold exposure of the extremities

    Get PDF
    This is an accepted manuscript of an article published by Springer in European Journal of Applied Physiology on 01/08/2014, available online: https://doi.org/10.1007/s00421-014-2962-2 The accepted version of the publication may differ from the final published version.© 2014, Springer-Verlag Berlin Heidelberg. Purpose: Cold injuries are more prevalent in individuals of African descent (AFD). Therefore, we investigated the effect of extremity cooling on skin blood flow (SkBF) and temperature (Tsk) between ethnic groups.Methods: Thirty males [10 Caucasian (CAU), 10 Asian (ASN), 10 AFD] undertook three tests in 30 °C air whilst digit Tsk and SkBF were measured: (i) vasomotor threshold (VT) test—arm immersed in 35 °C water progressively cooled to 10 °C and rewarmed to 35 °C to identify vasoconstriction and vasodilatation; (ii) cold-induced vasodilatation (CIVD) test—hand immersed in 8 °C water for 30 min followed by spontaneous warming; (iii) cold sensitivity (CS) test—foot immersed in 15 °C water for 2 min followed by spontaneous warming. Cold sensory thresholds of the forearm and finger were also assessed.Results: In the VT test, vasoconstriction and vasodilatation occurred at a warmer finger Tsk in AFD during cooling [21.2 (4.4) vs. 17.0 (3.1) °C, P = 0.034] and warming [22.0 (7.9) vs. 12.1 (4.1) °C, P = 0.002] compared with CAU. In the CIVD test, average SkBF during immersion was greater in CAU [42 (24) %] than ASN [25 (8) %, P = 0.036] and AFD [24 (13) %, P = 0.023]. Following immersion, SkBF was higher and rewarming faster in CAU [3.2 (0.4) °C min−1] compared with AFD [2.5 (0.7) °C min−1, P = 0.037], but neither group differed from ASN [3.0 (0.6) °C min−1]. Responses to the CS test and cold sensory thresholds were similar between groups.Conclusion: AFD experienced a more intense protracted finger vasoconstriction than CAU during hand immersion, whilst ASN experienced an intermediate response. This greater sensitivity to cold may explain why AFD are more susceptible to cold injuries.Published versio

    Structural phase transitions in Ruddlesden-Popper phases of strontium titanate: {\em ab initio} and inhomogeneous Ginzburg-Landau approaches

    Full text link
    We present the first systematic {\em ab initio} study of anti-ferrodistortive (AFD) order in Ruddlesden-Popper (RP) phases of strontium titanate, Sr1+n_{1+n}Tin_nO3n+1_{3n+1}, as a function of both compressive epitaxial strain and phase number nn. We find all RP phases to exhibit AFD order under a significant range of strains, recovering the bulk AFD order as 1/n2\sim 1/n^2. A Ginzburg-Landau Hamiltonian generalized to include inter-octahedral interactions reproduces our {\em ab initio} results well, opening a pathway to understanding other nanostructured perovskite systems

    Non-monotonic anisotropy in charge conduction induced by antiferrodistortive transition in metallic SrTiO3_{3}

    Full text link
    Cubic SrTiO3_{3} becomes tetragonal below 105 K. The antiferrodistortive (AFD) distortion leads to clockwise and counter-clockwise rotation of adjacent TiO6_{6} octahedra. This insulator becomes a metal upon the introduction of extremely low concentration of n-type dopants. However, signatures of the structural phase transition in charge conduction have remained elusive. Employing the Montgomery technique, we succeed in resolving the anisotropy of charge conductivity induced by the AFD transition, in the presence of different types of dopants. We find that the slight lattice distortion (<6×104<6 \times 10^{-4}) gives rise to a twenty percent anisotropy in charge conductivity, in agreement with the expectations of band calculations. Application of uniaxial strain amplifies the detectable anisotropy by disfavoring one of the three possible tetragonal domains. In contrast with all other known anisotropic Fermi liquids, the anisotropy has opposite signs for elastic and inelastic scattering. Increasing the concentration of dopants leads to a drastic shift in the temperature of the AFD transition either upward or downward. The latter result puts strong constraints on any hypothetical role played by the AFD soft mode in the formation of Cooper pairs and the emergence of superconductivity in SrTiO3_3.Comment: 6 pages with 5 figure

    Systematic {\em ab initio} study of the phase diagram of epitaxially strained SrTiO3_3

    Full text link
    We use density-functional theory with the local-density approximation to study the structural and ferroelectric properties of SrTiO3_3 under misfit strains. Both the antiferrodistortive (AFD) and ferroelectric (FE) instabilities are considered. The rotation of the oxygen octahedra and the movement of the atoms are fully relaxed within the constraint of a fixed in-plane lattice constant. We find a rich misfit strain-induced phase transition sequence and is obtained only when the AFD distortion is taken into account. We also find that compressive misfit strains induce ferroelectricity in the tetragonal low temperature phase only whilst tensile strains induce ferroelectricity in the orthorhombic phases only. The calculated FE polarization for both the tetragonal and orthorhombic phases increases monotonically with the magnitude of the strains. The AFD rotation angle of the oxygen octahedra in the tetragonal phase increases dramatically as the misfit strain goes from the tensile to compressive strain region whilst it decreases slightly in the orthorhombic (FO4) phase. This reveals why the polarization in the epitaxially strained SrTiO3_3 would be larger when the tensile strain is applied, since the AFD distortion is found to reduce the FE instability and even to completely suppress it in the small strain region. Finally, our analysis of the average polar distortion and the charge density distribution suggests that both the Ti-O and Sr-O layers contribute significantly to the FE polarization
    corecore