3 research outputs found

    Analysis of AeroMACS Data Link for Unmanned Aircraft Vehicles

    Full text link
    Aeronautical Mobile Airport Communications System (AeroMACS) is based on the IEEE 802.16e mobile wireless standard commonly known as WiMAX. It is expected to be the main part of the next-generation aviation communication system to support fixed and mobile services for manned and unmanned applications. AeroMACS will be an essential technology helping pave the way toward full integration of Unmanned Aircraft Vehicle (UAV) into the national airspace. A number of practical tests and analyses have been done so far for AeroMACS. The main contribution of this paper is to consider the theoretical concepts behind its features and discuss their suitability for UAV applications. Mathematical analyses of the AeroMACS physical layer framework are provided to show the theoretical trade-offs. We mainly focus on the analysis of the AeroMACS OFDMA structure, which affects the speed limits, coverage cell, channel estimation requirements, and inter-carrier interference

    AeroMACS Evolution - Analysis during Landing, Takeoff, and Approach Phases

    No full text
    The Aeronautical Mobile Airport Communications System (AeroMACS) has been developed for future high-rate, secure, and safety enhancing airport communications in the C-band. Although initially designed for ground applications, the relatively large radio coverage area of AeroMACS suggests its potential extension to new operative scenarios wherein a data link is established between the control tower and the aircraft even when the latter is not in contact with the airport surface. An examination is needed for these new applications concerning channel properties, synchronization aspects, and general performance behaviors. In this paper, the possibility of using AeroMACS during the approach, landing, and takeoff phases of an aircraft flight is investigated. After deriving the channel parameters for the new application scenarios, the synchronization and channel estimation algorithms are presented and the overall error rate performance is assessed by means of computer simulations. Our results indicate that AeroMACS is able to cope with the new operational phases and its use can be extended beyond airport surface applications

    Modellierung und Evaluierung der “Required Communication Performance” von Luft-Boden Datenverbindungen mit “Erasure Codes”.

    Get PDF
    In this work, a model to calculate the air-ground data link performance using the “Required Communication Performance” metric used in aviation is proposed. This model is applied to evaluate the performance of data links and to estimate the minimum link performance required to meet the safety requirements. The results show that it is highly unlikely that air-ground data links achieve the minimum performance. “Erasure codes” and a multiple link concept are proposed and evaluated to improve the performance of the links.Diese Arbeit beschreibt ein Modell, mit welcher die Leistung von Luft-Boden Datenverbindungen unter Verwendung der in der Luftfahrt verwendeten Metrik „Required Communication Performance“, berechnet werden. Dieses Modell wird angewendet, um die Leistung von Datenverbindungen zu bewerten und die minimale Verbindungsleistung abzuschätzen, die erforderlich ist, um die Sicherheitsanforderungen zu erfüllen. Die Ergebnisse zeigen, dass es sehr unwahrscheinlich ist, dass Luft-Boden Datenverbindungen die Mindestleistung erreichen. Zur Verbesserung der Leistung der Links werden Konzepte basierend auf “Erasure Codes" und mehreren Links vorgeschlagen und evaluiert
    corecore