7,338 research outputs found

    Adversarial Diversity and Hard Positive Generation

    Full text link
    State-of-the-art deep neural networks suffer from a fundamental problem - they misclassify adversarial examples formed by applying small perturbations to inputs. In this paper, we present a new psychometric perceptual adversarial similarity score (PASS) measure for quantifying adversarial images, introduce the notion of hard positive generation, and use a diverse set of adversarial perturbations - not just the closest ones - for data augmentation. We introduce a novel hot/cold approach for adversarial example generation, which provides multiple possible adversarial perturbations for every single image. The perturbations generated by our novel approach often correspond to semantically meaningful image structures, and allow greater flexibility to scale perturbation-amplitudes, which yields an increased diversity of adversarial images. We present adversarial images on several network topologies and datasets, including LeNet on the MNIST dataset, and GoogLeNet and ResidualNet on the ImageNet dataset. Finally, we demonstrate on LeNet and GoogLeNet that fine-tuning with a diverse set of hard positives improves the robustness of these networks compared to training with prior methods of generating adversarial images.Comment: Accepted to CVPR 2016 DeepVision Worksho

    Parameter-Saving Adversarial Training: Reinforcing Multi-Perturbation Robustness via Hypernetworks

    Full text link
    Adversarial training serves as one of the most popular and effective methods to defend against adversarial perturbations. However, most defense mechanisms only consider a single type of perturbation while various attack methods might be adopted to perform stronger adversarial attacks against the deployed model in real-world scenarios, e.g., β„“2\ell_2 or β„“βˆž\ell_\infty. Defending against various attacks can be a challenging problem since multi-perturbation adversarial training and its variants only achieve suboptimal robustness trade-offs, due to the theoretical limit to multi-perturbation robustness for a single model. Besides, it is impractical to deploy large models in some storage-efficient scenarios. To settle down these drawbacks, in this paper we propose a novel multi-perturbation adversarial training framework, parameter-saving adversarial training (PSAT), to reinforce multi-perturbation robustness with an advantageous side effect of saving parameters, which leverages hypernetworks to train specialized models against a single perturbation and aggregate these specialized models to defend against multiple perturbations. Eventually, we extensively evaluate and compare our proposed method with state-of-the-art single/multi-perturbation robust methods against various latest attack methods on different datasets, showing the robustness superiority and parameter efficiency of our proposed method, e.g., for the CIFAR-10 dataset with ResNet-50 as the backbone, PSAT saves approximately 80\% of parameters with achieving the state-of-the-art robustness trade-off accuracy.Comment: 9 pages, 2 figure

    Towards Compositional Adversarial Robustness: Generalizing Adversarial Training to Composite Semantic Perturbations

    Full text link
    Model robustness against adversarial examples of single perturbation type such as the β„“p\ell_{p}-norm has been widely studied, yet its generalization to more realistic scenarios involving multiple semantic perturbations and their composition remains largely unexplored. In this paper, we first propose a novel method for generating composite adversarial examples. Our method can find the optimal attack composition by utilizing component-wise projected gradient descent and automatic attack-order scheduling. We then propose generalized adversarial training (GAT) to extend model robustness from β„“p\ell_{p}-ball to composite semantic perturbations, such as the combination of Hue, Saturation, Brightness, Contrast, and Rotation. Results obtained using ImageNet and CIFAR-10 datasets indicate that GAT can be robust not only to all the tested types of a single attack, but also to any combination of such attacks. GAT also outperforms baseline β„“βˆž\ell_{\infty}-norm bounded adversarial training approaches by a significant margin

    Robust Classification via a Single Diffusion Model

    Full text link
    Recently, diffusion models have been successfully applied to improving adversarial robustness of image classifiers by purifying the adversarial noises or generating realistic data for adversarial training. However, the diffusion-based purification can be evaded by stronger adaptive attacks while adversarial training does not perform well under unseen threats, exhibiting inevitable limitations of these methods. To better harness the expressive power of diffusion models, in this paper we propose Robust Diffusion Classifier (RDC), a generative classifier that is constructed from a pre-trained diffusion model to be adversarially robust. Our method first maximizes the data likelihood of a given input and then predicts the class probabilities of the optimized input using the conditional likelihood of the diffusion model through Bayes' theorem. Since our method does not require training on particular adversarial attacks, we demonstrate that it is more generalizable to defend against multiple unseen threats. In particular, RDC achieves 73.24%73.24\% robust accuracy against β„“βˆž\ell_\infty norm-bounded perturbations with ϡ∞=8/255\epsilon_\infty=8/255 on CIFAR-10, surpassing the previous state-of-the-art adversarial training models by +2.34%+2.34\%. The findings highlight the potential of generative classifiers by employing diffusion models for adversarial robustness compared with the commonly studied discriminative classifiers

    Towards Certified Probabilistic Robustness with High Accuracy

    Full text link
    Adversarial examples pose a security threat to many critical systems built on neural networks (such as face recognition systems, and self-driving cars). While many methods have been proposed to build robust models, how to build certifiably robust yet accurate neural network models remains an open problem. For example, adversarial training improves empirical robustness, but they do not provide certification of the model's robustness. On the other hand, certified training provides certified robustness but at the cost of a significant accuracy drop. In this work, we propose a novel approach that aims to achieve both high accuracy and certified probabilistic robustness. Our method has two parts, i.e., a probabilistic robust training method with an additional goal of minimizing variance in terms of divergence and a runtime inference method for certified probabilistic robustness of the prediction. The latter enables efficient certification of the model's probabilistic robustness at runtime with statistical guarantees. This is supported by our training objective, which minimizes the variance of the model's predictions in a given vicinity, derived from a general definition of model robustness. Our approach works for a variety of perturbations and is reasonably efficient. Our experiments on multiple models trained on different datasets demonstrate that our approach significantly outperforms existing approaches in terms of both certification rate and accuracy
    • …
    corecore