5 research outputs found

    Adversarial Training Versus Weight Decay

    Full text link
    Performance-critical machine learning models should be robust to input perturbations not seen during training. Adversarial training is a method for improving a model's robustness to some perturbations by including them in the training process, but this tends to exacerbate other vulnerabilities of the model. The adversarial training framework has the effect of translating the data with respect to the cost function, while weight decay has a scaling effect. Although weight decay could be considered a crude regularization technique, it appears superior to adversarial training as it remains stable over a broader range of regimes and reduces all generalization errors. Equipped with these abstractions, we provide key baseline results and methodology for characterizing robustness. The two approaches can be combined to yield one small model that demonstrates good robustness to several white-box attacks associated with different metrics

    Adversarial Examples as an Input-Fault Tolerance Problem

    Full text link
    We analyze the adversarial examples problem in terms of a model's fault tolerance with respect to its input. Whereas previous work focuses on arbitrarily strict threat models, i.e., ϵ\epsilon-perturbations, we consider arbitrary valid inputs and propose an information-based characteristic for evaluating tolerance to diverse input faults.Comment: NIPS 2018 Workshop on Security and Machine Learning. Source available at https://github.com/uoguelph-mlrg/nips18-secml-advex-input-faul

    How do SGD hyperparameters in natural training affect adversarial robustness?

    Full text link
    Learning rate, batch size and momentum are three important hyperparameters in the SGD algorithm. It is known from the work of Jastrzebski et al. arXiv:1711.04623 that large batch size training of neural networks yields models which do not generalize well. Yao et al. arXiv:1802.08241 observe that large batch training yields models that have poor adversarial robustness. In the same paper, the authors train models with different batch sizes and compute the eigenvalues of the Hessian of loss function. They observe that as the batch size increases, the dominant eigenvalues of the Hessian become larger. They also show that both adversarial training and small-batch training leads to a drop in the dominant eigenvalues of the Hessian or lowering its spectrum. They combine adversarial training and second order information to come up with a new large-batch training algorithm and obtain robust models with good generalization. In this paper, we empirically observe the effect of the SGD hyperparameters on the accuracy and adversarial robustness of networks trained with unperturbed samples. Jastrzebski et al. considered training models with a fixed learning rate to batch size ratio. They observed that higher the ratio, better is the generalization. We observe that networks trained with constant learning rate to batch size ratio, as proposed in Jastrzebski et al., yield models which generalize well and also have almost constant adversarial robustness, independent of the batch size. We observe that momentum is more effective with varying batch sizes and a fixed learning rate than with constant learning rate to batch size ratio based SGD training.Comment: Preliminary version presented in ICML 2019 Workshop on "Understanding and Improving Generalization in Deep Learning" as "On Adversarial Robustness of Small vs Large Batch Training

    Adversarially Robust Training through Structured Gradient Regularization

    Full text link
    We propose a novel data-dependent structured gradient regularizer to increase the robustness of neural networks vis-a-vis adversarial perturbations. Our regularizer can be derived as a controlled approximation from first principles, leveraging the fundamental link between training with noise and regularization. It adds very little computational overhead during learning and is simple to implement generically in standard deep learning frameworks. Our experiments provide strong evidence that structured gradient regularization can act as an effective first line of defense against attacks based on low-level signal corruption

    Measuring Robustness to Natural Distribution Shifts in Image Classification

    Full text link
    We study how robust current ImageNet models are to distribution shifts arising from natural variations in datasets. Most research on robustness focuses on synthetic image perturbations (noise, simulated weather artifacts, adversarial examples, etc.), which leaves open how robustness on synthetic distribution shift relates to distribution shift arising in real data. Informed by an evaluation of 204 ImageNet models in 213 different test conditions, we find that there is often little to no transfer of robustness from current synthetic to natural distribution shift. Moreover, most current techniques provide no robustness to the natural distribution shifts in our testbed. The main exception is training on larger and more diverse datasets, which in multiple cases increases robustness, but is still far from closing the performance gaps. Our results indicate that distribution shifts arising in real data are currently an open research problem. We provide our testbed and data as a resource for future work at https://modestyachts.github.io/imagenet-testbed/
    corecore