7 research outputs found

    Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation

    Full text link
    Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions. Unsupervised Domain Adaptation (UDA) techniques have been proposed to adapt models trained in the source domain to the target domain. However, those methods require a large number of images from the target domain for model training. In this paper, we propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training. To accomplish this challenging task, first, a spectral sensitivity map is introduced to characterize the generalization weaknesses of models in the frequency domain. We then developed a Sensitivity-guided Spectral Adversarial MixUp (SAMix) method to generate target-style images to effectively suppresses the model sensitivity, which leads to improved model generalizability in the target domain. We demonstrated the proposed method and rigorously evaluated its performance on multiple tasks using several public datasets.Comment: Accepted by MICCAI 202

    Look, Cast and Mold: Learning 3D Shape Manifold from Single-view Synthetic Data

    Full text link
    Inferring the stereo structure of objects in the real world is a challenging yet practical task. To equip deep models with this ability usually requires abundant 3D supervision which is hard to acquire. It is promising that we can simply benefit from synthetic data, where pairwise ground-truth is easy to access. Nevertheless, the domain gaps are nontrivial considering the variant texture, shape and context. To overcome these difficulties, we propose a Visio-Perceptual Adaptive Network for single-view 3D reconstruction, dubbed VPAN. To generalize the model towards a real scenario, we propose to fulfill several aspects: (1) Look: visually incorporate spatial structure from the single view to enhance the expressiveness of representation; (2) Cast: perceptually align the 2D image features to the 3D shape priors with cross-modal semantic contrastive mapping; (3) Mold: reconstruct stereo-shape of target by transforming embeddings into the desired manifold. Extensive experiments on several benchmarks demonstrate the effectiveness and robustness of the proposed method in learning the 3D shape manifold from synthetic data via a single-view. The proposed method outperforms state-of-the-arts on Pix3D dataset with IoU 0.292 and CD 0.108, and reaches IoU 0.329 and CD 0.104 on Pascal 3D+

    Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation

    Full text link
    Domain adaptation is to transfer the shared knowledge learned from the source domain to a new environment, i.e., target domain. One common practice is to train the model on both labeled source-domain data and unlabeled target-domain data. Yet the learned models are usually biased due to the strong supervision of the source domain. Most researchers adopt the early-stopping strategy to prevent over-fitting, but when to stop training remains a challenging problem since the lack of the target-domain validation set. In this paper, we propose one efficient bootstrapping method, called Adaboost Student, explicitly learning complementary models during training and liberating users from empirical early stopping. Adaboost Student combines the deep model learning with the conventional training strategy, i.e., adaptive boosting, and enables interactions between learned models and the data sampler. We adopt one adaptive data sampler to progressively facilitate learning on hard samples and aggregate "weak" models to prevent over-fitting. Extensive experiments show that (1) Without the need to worry about the stopping time, AdaBoost Student provides one robust solution by efficient complementary model learning during training. (2) AdaBoost Student is orthogonal to most domain adaptation methods, which can be combined with existing approaches to further improve the state-of-the-art performance. We have achieved competitive results on three widely-used scene segmentation domain adaptation benchmarks.Comment: 10 pages, 7 tables, 5 figure
    corecore