5,403 research outputs found

    Adversarial Structured Prediction for Multivariate Measures

    Full text link
    Many predicted structured objects (e.g., sequences, matchings, trees) are evaluated using the F-score, alignment error rate (AER), or other multivariate performance measures. Since inductively optimizing these measures using training data is typically computationally difficult, empirical risk minimization of surrogate losses is employed, using, e.g., the hinge loss for (structured) support vector machines. These approximations often introduce a mismatch between the learner's objective and the desired application performance, leading to inconsistency. We take a different approach: adversarially approximate training data while optimizing the exact F-score or AER. Structured predictions under this formulation result from solving zero-sum games between a predictor seeking the best performance and an adversary seeking the worst while required to (approximately) match certain structured properties of the training data. We explore this approach for word alignment (AER evaluation) and named entity recognition (F-score evaluation) with linear-chain constraints

    Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs

    Full text link
    We approach structured output prediction by optimizing a deep value network (DVN) to precisely estimate the task loss on different output configurations for a given input. Once the model is trained, we perform inference by gradient descent on the continuous relaxations of the output variables to find outputs with promising scores from the value network. When applied to image segmentation, the value network takes an image and a segmentation mask as inputs and predicts a scalar estimating the intersection over union between the input and ground truth masks. For multi-label classification, the DVN's objective is to correctly predict the F1 score for any potential label configuration. The DVN framework achieves the state-of-the-art results on multi-label prediction and image segmentation benchmarks.Comment: Published at ICML 201

    Adversarial Phenomenon in the Eyes of Bayesian Deep Learning

    Full text link
    Deep Learning models are vulnerable to adversarial examples, i.e.\ images obtained via deliberate imperceptible perturbations, such that the model misclassifies them with high confidence. However, class confidence by itself is an incomplete picture of uncertainty. We therefore use principled Bayesian methods to capture model uncertainty in prediction for observing adversarial misclassification. We provide an extensive study with different Bayesian neural networks attacked in both white-box and black-box setups. The behaviour of the networks for noise, attacks and clean test data is compared. We observe that Bayesian neural networks are uncertain in their predictions for adversarial perturbations, a behaviour similar to the one observed for random Gaussian perturbations. Thus, we conclude that Bayesian neural networks can be considered for detecting adversarial examples.Comment: 13 pages, 7 figure

    Augmenting correlation structures in spatial data using deep generative models

    Full text link
    State-of-the-art deep learning methods have shown a remarkable capacity to model complex data domains, but struggle with geospatial data. In this paper, we introduce SpaceGAN, a novel generative model for geospatial domains that learns neighbourhood structures through spatial conditioning. We propose to enhance spatial representation beyond mere spatial coordinates, by conditioning each data point on feature vectors of its spatial neighbours, thus allowing for a more flexible representation of the spatial structure. To overcome issues of training convergence, we employ a metric capturing the loss in local spatial autocorrelation between real and generated data as stopping criterion for SpaceGAN parametrization. This way, we ensure that the generator produces synthetic samples faithful to the spatial patterns observed in the input. SpaceGAN is successfully applied for data augmentation and outperforms compared to other methods of synthetic spatial data generation. Finally, we propose an ensemble learning framework for the geospatial domain, taking augmented SpaceGAN samples as training data for a set of ensemble learners. We empirically show the superiority of this approach over conventional ensemble learning approaches and rivaling spatial data augmentation methods, using synthetic and real-world prediction tasks. Our findings suggest that SpaceGAN can be used as a tool for (1) artificially inflating sparse geospatial data and (2) improving generalization of geospatial models

    Identify Susceptible Locations in Medical Records via Adversarial Attacks on Deep Predictive Models

    Full text link
    The surging availability of electronic medical records (EHR) leads to increased research interests in medical predictive modeling. Recently many deep learning based predicted models are also developed for EHR data and demonstrated impressive performance. However, a series of recent studies showed that these deep models are not safe: they suffer from certain vulnerabilities. In short, a well-trained deep network can be extremely sensitive to inputs with negligible changes. These inputs are referred to as adversarial examples. In the context of medical informatics, such attacks could alter the result of a high performance deep predictive model by slightly perturbing a patient's medical records. Such instability not only reflects the weakness of deep architectures, more importantly, it offers guide on detecting susceptible parts on the inputs. In this paper, we propose an efficient and effective framework that learns a time-preferential minimum attack targeting the LSTM model with EHR inputs, and we leverage this attack strategy to screen medical records of patients and identify susceptible events and measurements. The efficient screening procedure can assist decision makers to pay extra attentions to the locations that can cause severe consequence if not measured correctly. We conduct extensive empirical studies on a real-world urgent care cohort and demonstrate the effectiveness of the proposed screening approach

    Parametric Adversarial Divergences are Good Task Losses for Generative Modeling

    Full text link
    Generative modeling of high dimensional data like images is a notoriously difficult and ill-defined problem. In particular, how to evaluate a learned generative model is unclear. In this position paper, we argue that adversarial learning, pioneered with generative adversarial networks (GANs), provides an interesting framework to implicitly define more meaningful task losses for generative modeling tasks, such as for generating "visually realistic" images. We refer to those task losses as parametric adversarial divergences and we give two main reasons why we think parametric divergences are good learning objectives for generative modeling. Additionally, we unify the processes of choosing a good structured loss (in structured prediction) and choosing a discriminator architecture (in generative modeling) using statistical decision theory; we are then able to formalize and quantify the intuition that "weaker" losses are easier to learn from, in a specific setting. Finally, we propose two new challenging tasks to evaluate parametric and nonparametric divergences: a qualitative task of generating very high-resolution digits, and a quantitative task of learning data that satisfies high-level algebraic constraints. We use two common divergences to train a generator and show that the parametric divergence outperforms the nonparametric divergence on both the qualitative and the quantitative task.Comment: 22 page

    Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

    Full text link
    Large amounts of labeled data are typically required to train deep learning models. For many real-world problems, however, acquiring additional data can be expensive or even impossible. We present semi-supervised deep kernel learning (SSDKL), a semi-supervised regression model based on minimizing predictive variance in the posterior regularization framework. SSDKL combines the hierarchical representation learning of neural networks with the probabilistic modeling capabilities of Gaussian processes. By leveraging unlabeled data, we show improvements on a diverse set of real-world regression tasks over supervised deep kernel learning and semi-supervised methods such as VAT and mean teacher adapted for regression.Comment: In Proceedings of Neural Information Processing Systems (NeurIPS) 201

    Recent Advances in Autoencoder-Based Representation Learning

    Full text link
    Learning useful representations with little or no supervision is a key challenge in artificial intelligence. We provide an in-depth review of recent advances in representation learning with a focus on autoencoder-based models. To organize these results we make use of meta-priors believed useful for downstream tasks, such as disentanglement and hierarchical organization of features. In particular, we uncover three main mechanisms to enforce such properties, namely (i) regularizing the (approximate or aggregate) posterior distribution, (ii) factorizing the encoding and decoding distribution, or (iii) introducing a structured prior distribution. While there are some promising results, implicit or explicit supervision remains a key enabler and all current methods use strong inductive biases and modeling assumptions. Finally, we provide an analysis of autoencoder-based representation learning through the lens of rate-distortion theory and identify a clear tradeoff between the amount of prior knowledge available about the downstream tasks, and how useful the representation is for this task.Comment: Presented at the third workshop on Bayesian Deep Learning (NeurIPS 2018

    Probabilistic Video Generation using Holistic Attribute Control

    Full text link
    Videos express highly structured spatio-temporal patterns of visual data. A video can be thought of as being governed by two factors: (i) temporally invariant (e.g., person identity), or slowly varying (e.g., activity), attribute-induced appearance, encoding the persistent content of each frame, and (ii) an inter-frame motion or scene dynamics (e.g., encoding evolution of the person ex-ecuting the action). Based on this intuition, we propose a generative framework for video generation and future prediction. The proposed framework generates a video (short clip) by decoding samples sequentially drawn from a latent space distribution into full video frames. Variational Autoencoders (VAEs) are used as a means of encoding/decoding frames into/from the latent space and RNN as a wayto model the dynamics in the latent space. We improve the video generation consistency through temporally-conditional sampling and quality by structuring the latent space with attribute controls; ensuring that attributes can be both inferred and conditioned on during learning/generation. As a result, given attributes and/orthe first frame, our model is able to generate diverse but highly consistent sets ofvideo sequences, accounting for the inherent uncertainty in the prediction task. Experimental results on Chair CAD, Weizmann Human Action, and MIT-Flickr datasets, along with detailed comparison to the state-of-the-art, verify effectiveness of the framework

    Generative Imputation and Stochastic Prediction

    Full text link
    In many machine learning applications, we are faced with incomplete datasets. In the literature, missing data imputation techniques have been mostly concerned with filling missing values. However, the existence of missing values is synonymous with uncertainties not only over the distribution of missing values but also over target class assignments that require careful consideration. In this paper, we propose a simple and effective method for imputing missing features and estimating the distribution of target assignments given incomplete data. In order to make imputations, we train a simple and effective generator network to generate imputations that a discriminator network is tasked to distinguish. Following this, a predictor network is trained using the imputed samples from the generator network to capture the classification uncertainties and make predictions accordingly. The proposed method is evaluated on CIFAR-10 and MNIST image datasets as well as five real-world tabular classification datasets, under different missingness rates and structures. Our experimental results show the effectiveness of the proposed method in generating imputations as well as providing estimates for the class uncertainties in a classification task when faced with missing values
    • …
    corecore