8,955 research outputs found

    Adversarial Speaker Adaptation

    Full text link
    We propose a novel adversarial speaker adaptation (ASA) scheme, in which adversarial learning is applied to regularize the distribution of deep hidden features in a speaker-dependent (SD) deep neural network (DNN) acoustic model to be close to that of a fixed speaker-independent (SI) DNN acoustic model during adaptation. An additional discriminator network is introduced to distinguish the deep features generated by the SD model from those produced by the SI model. In ASA, with a fixed SI model as the reference, an SD model is jointly optimized with the discriminator network to minimize the senone classification loss, and simultaneously to mini-maximize the SI/SD discrimination loss on the adaptation data. With ASA, a senone-discriminative deep feature is learned in the SD model with a similar distribution to that of the SI model. With such a regularized and adapted deep feature, the SD model can perform improved automatic speech recognition on the target speaker's speech. Evaluated on the Microsoft short message dictation dataset, ASA achieves 14.4% and 7.9% relative word error rate improvements for supervised and unsupervised adaptation, respectively, over an SI model trained from 2600 hours data, with 200 adaptation utterances per speaker.Comment: 5 pages, 2 figures, ICASSP 201

    Speaker Adaptation for Attention-Based End-to-End Speech Recognition

    Full text link
    We propose three regularization-based speaker adaptation approaches to adapt the attention-based encoder-decoder (AED) model with very limited adaptation data from target speakers for end-to-end automatic speech recognition. The first method is Kullback-Leibler divergence (KLD) regularization, in which the output distribution of a speaker-dependent (SD) AED is forced to be close to that of the speaker-independent (SI) model by adding a KLD regularization to the adaptation criterion. To compensate for the asymmetric deficiency in KLD regularization, an adversarial speaker adaptation (ASA) method is proposed to regularize the deep-feature distribution of the SD AED through the adversarial learning of an auxiliary discriminator and the SD AED. The third approach is the multi-task learning, in which an SD AED is trained to jointly perform the primary task of predicting a large number of output units and an auxiliary task of predicting a small number of output units to alleviate the target sparsity issue. Evaluated on a Microsoft short message dictation task, all three methods are highly effective in adapting the AED model, achieving up to 12.2% and 3.0% word error rate improvement over an SI AED trained from 3400 hours data for supervised and unsupervised adaptation, respectively.Comment: 5 pages, 3 figures, Interspeech 201

    Leveraging Speaker Embeddings with Adversarial Multi-task Learning for Age Group Classification

    Full text link
    Recently, researchers have utilized neural network-based speaker embedding techniques in speaker-recognition tasks to identify speakers accurately. However, speaker-discriminative embeddings do not always represent speech features such as age group well. In an embedding model that has been highly trained to capture speaker traits, the task of age group classification is closer to speech information leakage. Hence, to improve age group classification performance, we consider the use of speaker-discriminative embeddings derived from adversarial multi-task learning to align features and reduce the domain discrepancy in age subgroups. In addition, we investigated different types of speaker embeddings to learn and generalize the domain-invariant representations for age groups. Experimental results on the VoxCeleb Enrichment dataset verify the effectiveness of our proposed adaptive adversarial network in multi-objective scenarios and leveraging speaker embeddings for the domain adaptation task
    • …
    corecore