1,402 research outputs found

    Adversarial Objects Against LiDAR-Based Autonomous Driving Systems

    Full text link
    Deep neural networks (DNNs) are found to be vulnerable against adversarial examples, which are carefully crafted inputs with a small magnitude of perturbation aiming to induce arbitrarily incorrect predictions. Recent studies show that adversarial examples can pose a threat to real-world security-critical applications: a "physical adversarial Stop Sign" can be synthesized such that the autonomous driving cars will misrecognize it as others (e.g., a speed limit sign). However, these image-space adversarial examples cannot easily alter 3D scans of widely equipped LiDAR or radar on autonomous vehicles. In this paper, we reveal the potential vulnerabilities of LiDAR-based autonomous driving detection systems, by proposing an optimization based approach LiDAR-Adv to generate adversarial objects that can evade the LiDAR-based detection system under various conditions. We first show the vulnerabilities using a blackbox evolution-based algorithm, and then explore how much a strong adversary can do, using our gradient-based approach LiDAR-Adv. We test the generated adversarial objects on the Baidu Apollo autonomous driving platform and show that such physical systems are indeed vulnerable to the proposed attacks. We also 3D-print our adversarial objects and perform physical experiments to illustrate that such vulnerability exists in the real world. Please find more visualizations and results on the anonymous website: https://sites.google.com/view/lidar-adv

    Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward

    Full text link
    Connected and autonomous vehicles (CAVs) will form the backbone of future next-generation intelligent transportation systems (ITS) providing travel comfort, road safety, along with a number of value-added services. Such a transformation---which will be fuelled by concomitant advances in technologies for machine learning (ML) and wireless communications---will enable a future vehicular ecosystem that is better featured and more efficient. However, there are lurking security problems related to the use of ML in such a critical setting where an incorrect ML decision may not only be a nuisance but can lead to loss of precious lives. In this paper, we present an in-depth overview of the various challenges associated with the application of ML in vehicular networks. In addition, we formulate the ML pipeline of CAVs and present various potential security issues associated with the adoption of ML methods. In particular, we focus on the perspective of adversarial ML attacks on CAVs and outline a solution to defend against adversarial attacks in multiple settings

    Learning 2D to 3D Lifting for Object Detection in 3D for Autonomous Vehicles

    Full text link
    We address the problem of 3D object detection from 2D monocular images in autonomous driving scenarios. We propose to lift the 2D images to 3D representations using learned neural networks and leverage existing networks working directly on 3D data to perform 3D object detection and localization. We show that, with carefully designed training mechanism and automatically selected minimally noisy data, such a method is not only feasible, but gives higher results than many methods working on actual 3D inputs acquired from physical sensors. On the challenging KITTI benchmark, we show that our 2D to 3D lifted method outperforms many recent competitive 3D networks while significantly outperforming previous state-of-the-art for 3D detection from monocular images. We also show that a late fusion of the output of the network trained on generated 3D images, with that trained on real 3D images, improves performance. We find the results very interesting and argue that such a method could serve as a highly reliable backup in case of malfunction of expensive 3D sensors, if not potentially making them redundant, at least in the case of low human injury risk autonomous navigation scenarios like warehouse automation

    WoodScape: A multi-task, multi-camera fisheye dataset for autonomous driving

    Full text link
    Fisheye cameras are commonly employed for obtaining a large field of view in surveillance, augmented reality and in particular automotive applications. In spite of their prevalence, there are few public datasets for detailed evaluation of computer vision algorithms on fisheye images. We release the first extensive fisheye automotive dataset, WoodScape, named after Robert Wood who invented the fisheye camera in 1906. WoodScape comprises of four surround view cameras and nine tasks including segmentation, depth estimation, 3D bounding box detection and soiling detection. Semantic annotation of 40 classes at the instance level is provided for over 10,000 images and annotation for other tasks are provided for over 100,000 images. With WoodScape, we would like to encourage the community to adapt computer vision models for fisheye camera instead of using naive rectification.Comment: Accepted for Oral Presentation at IEEE International Conference on Computer Vision (ICCV) 2019. Please refer to our website https://woodscape.valeo.com and https://github.com/valeoai/woodscape for release status and update

    Gated2Depth: Real-time Dense Lidar from Gated Images

    Full text link
    We present an imaging framework which converts three images from a gated camera into high-resolution depth maps with depth accuracy comparable to pulsed lidar measurements. Existing scanning lidar systems achieve low spatial resolution at large ranges due to mechanically-limited angular sampling rates, restricting scene understanding tasks to close-range clusters with dense sampling. Moreover, today's pulsed lidar scanners suffer from high cost, power consumption, large form-factors, and they fail in the presence of strong backscatter. We depart from point scanning and demonstrate that it is possible to turn a low-cost CMOS gated imager into a dense depth camera with at least 80m range - by learning depth from three gated images. The proposed architecture exploits semantic context across gated slices, and is trained on a synthetic discriminator loss without the need of dense depth labels. The proposed replacement for scanning lidar systems is real-time, handles back-scatter and provides dense depth at long ranges. We validate our approach in simulation and on real-world data acquired over 4,000km driving in northern Europe. Data and code are available at https://github.com/gruberto/Gated2Depth.Comment: ICCV 2019 (oral), Authorship changed due to ICCV polic

    Rearchitecting Classification Frameworks For Increased Robustness

    Full text link
    While generalizing well over natural inputs, neural networks are vulnerable to adversarial inputs. Existing defenses against adversarial inputs have largely been detached from the real world. These defenses also come at a cost to accuracy. Fortunately, there are invariances of an object that are its salient features; when we break them it will necessarily change the perception of the object. We find that applying invariants to the classification task makes robustness and accuracy feasible together. Two questions follow: how to extract and model these invariances? and how to design a classification paradigm that leverages these invariances to improve the robustness accuracy trade-off? The remainder of the paper discusses solutions to the aformenetioned questions

    DARTS: Deceiving Autonomous Cars with Toxic Signs

    Full text link
    Sign recognition is an integral part of autonomous cars. Any misclassification of traffic signs can potentially lead to a multitude of disastrous consequences, ranging from a life-threatening accident to even a large-scale interruption of transportation services relying on autonomous cars. In this paper, we propose and examine security attacks against sign recognition systems for Deceiving Autonomous caRs with Toxic Signs (we call the proposed attacks DARTS). In particular, we introduce two novel methods to create these toxic signs. First, we propose Out-of-Distribution attacks, which expand the scope of adversarial examples by enabling the adversary to generate these starting from an arbitrary point in the image space compared to prior attacks which are restricted to existing training/test data (In-Distribution). Second, we present the Lenticular Printing attack, which relies on an optical phenomenon to deceive the traffic sign recognition system. We extensively evaluate the effectiveness of the proposed attacks in both virtual and real-world settings and consider both white-box and black-box threat models. Our results demonstrate that the proposed attacks are successful under both settings and threat models. We further show that Out-of-Distribution attacks can outperform In-Distribution attacks on classifiers defended using the adversarial training defense, exposing a new attack vector for these defenses.Comment: Submitted to ACM CCS 2018; Extended version of [1801.02780] Rogue Signs: Deceiving Traffic Sign Recognition with Malicious Ads and Logo

    Randomized Adversarial Imitation Learning for Autonomous Driving

    Full text link
    With the evolution of various advanced driver assistance system (ADAS) platforms, the design of autonomous driving system is becoming more complex and safety-critical. The autonomous driving system simultaneously activates multiple ADAS functions; and thus it is essential to coordinate various ADAS functions. This paper proposes a randomized adversarial imitation learning (RAIL) method that imitates the coordination of autonomous vehicle equipped with advanced sensors. The RAIL policies are trained through derivative-free optimization for the decision maker that coordinates the proper ADAS functions, e.g., smart cruise control and lane keeping system. Especially, the proposed method is also able to deal with the LIDAR data and makes decisions in complex multi-lane highways and multi-agent environments

    Vision-based Navigation of Autonomous Vehicle in Roadway Environments with Unexpected Hazards

    Full text link
    Vision-based navigation of autonomous vehicles primarily depends on the Deep Neural Network (DNN) based systems in which the controller obtains input from sensors/detectors, such as cameras and produces a vehicle control output, such as a steering wheel angle to navigate the vehicle safely in a roadway traffic environment. Typically, these DNN-based systems of the autonomous vehicle are trained through supervised learning; however, recent studies show that a trained DNN-based system can be compromised by perturbation or adversarial inputs. Similarly, this perturbation can be introduced into the DNN-based systems of autonomous vehicle by unexpected roadway hazards, such as debris and roadblocks. In this study, we first introduce a roadway hazardous environment (both intentional and unintentional roadway hazards) that can compromise the DNN-based navigational system of an autonomous vehicle, and produces an incorrect steering wheel angle, which can cause crashes resulting in fatality and injury. Then, we develop a DNN-based autonomous vehicle driving system using object detection and semantic segmentation to mitigate the adverse effect of this type of hazardous environment, which helps the autonomous vehicle to navigate safely around such hazards. We find that our developed DNN-based autonomous vehicle driving system including hazardous object detection and semantic segmentation improves the navigational ability of an autonomous vehicle to avoid a potential hazard by 21% compared to the traditional DNN-based autonomous vehicle driving system.Comment: 17 pages, 12 image

    Yes, we GAN: Applying Adversarial Techniques for Autonomous Driving

    Full text link
    Generative Adversarial Networks (GAN) have gained a lot of popularity from their introduction in 2014 till present. Research on GAN is rapidly growing and there are many variants of the original GAN focusing on various aspects of deep learning. GAN are perceived as the most impactful direction of machine learning in the last decade. This paper focuses on the application of GAN in autonomous driving including topics such as advanced data augmentation, loss function learning, semi-supervised learning, etc. We formalize and review key applications of adversarial techniques and discuss challenges and open problems to be addressed.Comment: Accepted for publication in Electronic Imaging, Autonomous Vehicles and Machines 2019. arXiv admin note: text overlap with arXiv:1606.05908 by other author
    corecore