14,028 research outputs found

    Towards Robust Neural Image Compression: Adversarial Attack and Model Finetuning

    Full text link
    Deep neural network based image compression has been extensively studied. Model robustness is largely overlooked, though it is crucial to service enabling. We perform the adversarial attack by injecting a small amount of noise perturbation to original source images, and then encode these adversarial examples using prevailing learnt image compression models. Experiments report severe distortion in the reconstruction of adversarial examples, revealing the general vulnerability of existing methods, regardless of the settings used in underlying compression model (e.g., network architecture, loss function, quality scale) and optimization strategy used for injecting perturbation (e.g., noise threshold, signal distance measurement). Later, we apply the iterative adversarial finetuning to refine pretrained models. In each iteration, random source images and adversarial examples are mixed to update underlying model. Results show the effectiveness of the proposed finetuning strategy by substantially improving the compression model robustness. Overall, our methodology is simple, effective, and generalizable, making it attractive for developing robust learnt image compression solution. All materials have been made publicly accessible at https://njuvision.github.io/RobustNIC for reproducible research.Comment: This paper has been completely rewritte

    Understanding Compressive Adversarial Privacy

    Full text link
    Designing a data sharing mechanism without sacrificing too much privacy can be considered as a game between data holders and malicious attackers. This paper describes a compressive adversarial privacy framework that captures the trade-off between the data privacy and utility. We characterize the optimal data releasing mechanism through convex optimization when assuming that both the data holder and attacker can only modify the data using linear transformations. We then build a more realistic data releasing mechanism that can rely on a nonlinear compression model while the attacker uses a neural network. We demonstrate in a series of empirical applications that this framework, consisting of compressive adversarial privacy, can preserve sensitive information

    Relationship between Model Compression and Adversarial Robustness: A Review of Current Evidence

    Full text link
    Increasing the model capacity is a known approach to enhance the adversarial robustness of deep learning networks. On the other hand, various model compression techniques, including pruning and quantization, can reduce the size of the network while preserving its accuracy. Several recent studies have addressed the relationship between model compression and adversarial robustness, while some experiments have reported contradictory results. This work summarizes available evidence and discusses possible explanations for the observed effects.Comment: Accepted for publication at SSCI 202
    • …
    corecore