857 research outputs found

    Wasserstein Distributionally Robust Control Barrier Function using Conditional Value-at-Risk with Differentiable Convex Programming

    Full text link
    Control Barrier functions (CBFs) have attracted extensive attention for designing safe controllers for their deployment in real-world safety-critical systems. However, the perception of the surrounding environment is often subject to stochasticity and further distributional shift from the nominal one. In this paper, we present distributional robust CBF (DR-CBF) to achieve resilience under distributional shift while keeping the advantages of CBF, such as computational efficacy and forward invariance. To achieve this goal, we first propose a single-level convex reformulation to estimate the conditional value at risk (CVaR) of the safety constraints under distributional shift measured by a Wasserstein metric, which is by nature tri-level programming. Moreover, to construct a control barrier condition to enforce the forward invariance of the CVaR, the technique of differentiable convex programming is applied to enable differentiation through the optimization layer of CVaR estimation. We also provide an approximate variant of DR-CBF for higher-order systems. Simulation results are presented to validate the chance-constrained safety guarantee under the distributional shift in both first and second-order systems

    Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems

    Get PDF
    Learning-based control algorithms require data collection with abundant supervision for training. Safe exploration algorithms ensure the safety of this data collection process even when only partial knowledge is available. We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained stochastic optimal control with dynamics learning and feedback control. We derive an iterative convex optimization algorithm that solves an \underline{Info}rmation-cost \underline{S}tochastic \underline{N}onlinear \underline{O}ptimal \underline{C}ontrol problem (Info-SNOC). The optimization objective encodes both optimal performance and exploration for learning, and the safety is incorporated as distributionally robust chance constraints. The dynamics are predicted from a robust regression model that is learned from data. The Info-SNOC algorithm is used to compute a sub-optimal pool of safe motion plans that aid in exploration for learning unknown residual dynamics under safety constraints. A stable feedback controller is used to execute the motion plan and collect data for model learning. We prove the safety of rollout from our exploration method and reduction in uncertainty over epochs, thereby guaranteeing the consistency of our learning method. We validate the effectiveness of Info-SNOC by designing and implementing a pool of safe trajectories for a planar robot. We demonstrate that our approach has higher success rate in ensuring safety when compared to a deterministic trajectory optimization approach.Comment: Submitted to RA-L 2020, review-

    Learning Predictive Safety Filter via Decomposition of Robust Invariant Set

    Full text link
    Ensuring safety of nonlinear systems under model uncertainty and external disturbances is crucial, especially for real-world control tasks. Predictive methods such as robust model predictive control (RMPC) require solving nonconvex optimization problems online, which leads to high computational burden and poor scalability. Reinforcement learning (RL) works well with complex systems, but pays the price of losing rigorous safety guarantee. This paper presents a theoretical framework that bridges the advantages of both RMPC and RL to synthesize safety filters for nonlinear systems with state- and action-dependent uncertainty. We decompose the robust invariant set (RIS) into two parts: a target set that aligns with terminal region design of RMPC, and a reach-avoid set that accounts for the rest of RIS. We propose a policy iteration approach for robust reach-avoid problems and establish its monotone convergence. This method sets the stage for an adversarial actor-critic deep RL algorithm, which simultaneously synthesizes a reach-avoid policy network, a disturbance policy network, and a reach-avoid value network. The learned reach-avoid policy network is utilized to generate nominal trajectories for online verification, which filters potentially unsafe actions that may drive the system into unsafe regions when worst-case disturbances are applied. We formulate a second-order cone programming (SOCP) approach for online verification using system level synthesis, which optimizes for the worst-case reach-avoid value of any possible trajectories. The proposed safety filter requires much lower computational complexity than RMPC and still enjoys persistent robust safety guarantee. The effectiveness of our method is illustrated through a numerical example
    • …
    corecore