2 research outputs found

    Adversarial Learning of General Transformations for Data Augmentation

    Full text link
    Data augmentation (DA) is fundamental against overfitting in large convolutional neural networks, especially with a limited training dataset. In images, DA is usually based on heuristic transformations, like geometric or color transformations. Instead of using predefined transformations, our work learns data augmentation directly from the training data by learning to transform images with an encoder-decoder architecture combined with a spatial transformer network. The transformed images still belong to the same class but are new, more complex samples for the classifier. Our experiments show that our approach is better than previous generative data augmentation methods, and comparable to predefined transformation methods when training an image classifier

    Model Patching: Closing the Subgroup Performance Gap with Data Augmentation

    Full text link
    Classifiers in machine learning are often brittle when deployed. Particularly concerning are models with inconsistent performance on specific subgroups of a class, e.g., exhibiting disparities in skin cancer classification in the presence or absence of a spurious bandage. To mitigate these performance differences, we introduce model patching, a two-stage framework for improving robustness that encourages the model to be invariant to subgroup differences, and focus on class information shared by subgroups. Model patching first models subgroup features within a class and learns semantic transformations between them, and then trains a classifier with data augmentations that deliberately manipulate subgroup features. We instantiate model patching with CAMEL, which (1) uses a CycleGAN to learn the intra-class, inter-subgroup augmentations, and (2) balances subgroup performance using a theoretically-motivated subgroup consistency regularizer, accompanied by a new robust objective. We demonstrate CAMEL's effectiveness on 3 benchmark datasets, with reductions in robust error of up to 33% relative to the best baseline. Lastly, CAMEL successfully patches a model that fails due to spurious features on a real-world skin cancer dataset
    corecore