9,531 research outputs found

    Adversarial Learning for Fine-grained Image Search

    Full text link
    Fine-grained image search is still a challenging problem due to the difficulty in capturing subtle differences regardless of pose variations of objects from fine-grained categories. In practice, a dynamic inventory with new fine-grained categories adds another dimension to this challenge. In this work, we propose an end-to-end network, called FGGAN, that learns discriminative representations by implicitly learning a geometric transformation from multi-view images for fine-grained image search. We integrate a generative adversarial network (GAN) that can automatically handle complex view and pose variations by converting them to a canonical view without any predefined transformations. Moreover, in an open-set scenario, our network is able to better match images from unseen and unknown fine-grained categories. Extensive experiments on two public datasets and a newly collected dataset have demonstrated the outstanding robust performance of the proposed FGGAN in both closed-set and open-set scenarios, providing as much as 10% relative improvement compared to baselines

    Cross-modal Hallucination for Few-shot Fine-grained Recognition

    Full text link
    State-of-the-art deep learning algorithms generally require large amounts of data for model training. Lack thereof can severely deteriorate the performance, particularly in scenarios with fine-grained boundaries between categories. To this end, we propose a multimodal approach that facilitates bridging the information gap by means of meaningful joint embeddings. Specifically, we present a benchmark that is multimodal during training (i.e. images and texts) and single-modal in testing time (i.e. images), with the associated task to utilize multimodal data in base classes (with many samples), to learn explicit visual classifiers for novel classes (with few samples). Next, we propose a framework built upon the idea of cross-modal data hallucination. In this regard, we introduce a discriminative text-conditional GAN for sample generation with a simple self-paced strategy for sample selection. We show the results of our proposed discriminative hallucinated method for 1-, 2-, and 5- shot learning on the CUB dataset, where the accuracy is improved by employing multimodal data.Comment: CVPR 2018 Workshop on Fine-Grained Visual Categorizatio

    Ancient Painting to Natural Image: A New Solution for Painting Processing

    Full text link
    Collecting a large-scale and well-annotated dataset for image processing has become a common practice in computer vision. However, in the ancient painting area, this task is not practical as the number of paintings is limited and their style is greatly diverse. We, therefore, propose a novel solution for the problems that come with ancient painting processing. This is to use domain transfer to convert ancient paintings to photo-realistic natural images. By doing so, the ancient painting processing problems become natural image processing problems and models trained on natural images can be directly applied to the transferred paintings. Specifically, we focus on Chinese ancient flower, bird and landscape paintings in this work. A novel Domain Style Transfer Network (DSTN) is proposed to transfer ancient paintings to natural images which employ a compound loss to ensure that the transferred paintings still maintain the color composition and content of the input paintings. The experiment results show that the transferred paintings generated by the DSTN have a better performance in both the human perceptual test and other image processing tasks than other state-of-art methods, indicating the authenticity of the transferred paintings and the superiority of the proposed method.Comment: 10 pages, 6 figures, published in WACV 201

    Thinking Outside the Pool: Active Training Image Creation for Relative Attributes

    Full text link
    Current wisdom suggests more labeled image data is always better, and obtaining labels is the bottleneck. Yet curating a pool of sufficiently diverse and informative images is itself a challenge. In particular, training image curation is problematic for fine-grained attributes, where the subtle visual differences of interest may be rare within traditional image sources. We propose an active image generation approach to address this issue. The main idea is to jointly learn the attribute ranking task while also learning to generate novel realistic image samples that will benefit that task. We introduce an end-to-end framework that dynamically "imagines" image pairs that would confuse the current model, presents them to human annotators for labeling, then improves the predictive model with the new examples. With results on two datasets, we show that by thinking outside the pool of real images, our approach gains generalization accuracy for challenging fine-grained attribute comparisons

    Show, Adapt and Tell: Adversarial Training of Cross-domain Image Captioner

    Full text link
    Impressive image captioning results are achieved in domains with plenty of training image and sentence pairs (e.g., MSCOCO). However, transferring to a target domain with significant domain shifts but no paired training data (referred to as cross-domain image captioning) remains largely unexplored. We propose a novel adversarial training procedure to leverage unpaired data in the target domain. Two critic networks are introduced to guide the captioner, namely domain critic and multi-modal critic. The domain critic assesses whether the generated sentences are indistinguishable from sentences in the target domain. The multi-modal critic assesses whether an image and its generated sentence are a valid pair. During training, the critics and captioner act as adversaries -- captioner aims to generate indistinguishable sentences, whereas critics aim at distinguishing them. The assessment improves the captioner through policy gradient updates. During inference, we further propose a novel critic-based planning method to select high-quality sentences without additional supervision (e.g., tags). To evaluate, we use MSCOCO as the source domain and four other datasets (CUB-200-2011, Oxford-102, TGIF, and Flickr30k) as the target domains. Our method consistently performs well on all datasets. In particular, on CUB-200-2011, we achieve 21.8% CIDEr-D improvement after adaptation. Utilizing critics during inference further gives another 4.5% boost.Comment: ICCV 201

    Fine-grained Visual-textual Representation Learning

    Full text link
    Fine-grained visual categorization is to recognize hundreds of subcategories belonging to the same basic-level category, which is a highly challenging task due to the quite subtle and local visual distinctions among similar subcategories. Most existing methods generally learn part detectors to discover discriminative regions for better categorization performance. However, not all parts are beneficial and indispensable for visual categorization, and the setting of part detector number heavily relies on prior knowledge as well as experimental validation. As is known to all, when we describe the object of an image via textual descriptions, we mainly focus on the pivotal characteristics, and rarely pay attention to common characteristics as well as the background areas. This is an involuntary transfer from human visual attention to textual attention, which leads to the fact that textual attention tells us how many and which parts are discriminative and significant to categorization. So textual attention could help us to discover visual attention in image. Inspired by this, we propose a fine-grained visual-textual representation learning (VTRL) approach, and its main contributions are: (1) Fine-grained visual-textual pattern mining devotes to discovering discriminative visual-textual pairwise information for boosting categorization performance through jointly modeling vision and text with generative adversarial networks (GANs), which automatically and adaptively discovers discriminative parts. (2) Visual-textual representation learning jointly combines visual and textual information, which preserves the intra-modality and inter-modality information to generate complementary fine-grained representation, as well as further improves categorization performance.Comment: 12 pages, accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Joint Discriminative and Generative Learning for Person Re-identification

    Full text link
    Person re-identification (re-id) remains challenging due to significant intra-class variations across different cameras. Recently, there has been a growing interest in using generative models to augment training data and enhance the invariance to input changes. The generative pipelines in existing methods, however, stay relatively separate from the discriminative re-id learning stages. Accordingly, re-id models are often trained in a straightforward manner on the generated data. In this paper, we seek to improve learned re-id embeddings by better leveraging the generated data. To this end, we propose a joint learning framework that couples re-id learning and data generation end-to-end. Our model involves a generative module that separately encodes each person into an appearance code and a structure code, and a discriminative module that shares the appearance encoder with the generative module. By switching the appearance or structure codes, the generative module is able to generate high-quality cross-id composed images, which are online fed back to the appearance encoder and used to improve the discriminative module. The proposed joint learning framework renders significant improvement over the baseline without using generated data, leading to the state-of-the-art performance on several benchmark datasets.Comment: CVPR 2019 (Oral

    Domain invariant hierarchical embedding for grocery products recognition

    Full text link
    Recognizing packaged grocery products based solely on appearance is still an open issue for modern computer vision systems due to peculiar challenges. Firstly, the number of different items to be recognized is huge (i.e., in the order of thousands) and rapidly changing over time. Moreover, there exist a significant domain shift between the images that should be recognized at test time, taken in stores by cheap cameras, and those available for training, usually just one or a few studio-quality images per product. We propose an end-to-end architecture comprising a GAN to address the domain shift at training time and a deep CNN trained on the samples generated by the GAN to learn an embedding of product images that enforces a hierarchy between product categories. At test time, we perform recognition by means of K-NN search against a database consisting of just one reference image per product. Experiments addressing recognition of products present in the training datasets as well as different ones unseen at training time show that our approach compares favourably to state-of-the-art methods on the grocery recognition task and generalize fairly well to similar ones

    Interpreting Adversarial Examples with Attributes

    Full text link
    Deep computer vision systems being vulnerable to imperceptible and carefully crafted noise have raised questions regarding the robustness of their decisions. We take a step back and approach this problem from an orthogonal direction. We propose to enable black-box neural networks to justify their reasoning both for clean and for adversarial examples by leveraging attributes, i.e. visually discriminative properties of objects. We rank attributes based on their class relevance, i.e. how the classification decision changes when the input is visually slightly perturbed, as well as image relevance, i.e. how well the attributes can be localized on both clean and perturbed images. We present comprehensive experiments for attribute prediction, adversarial example generation, adversarially robust learning, and their qualitative and quantitative analysis using predicted attributes on three benchmark datasets

    Open Logo Detection Challenge

    Full text link
    Existing logo detection benchmarks consider artificial deployment scenarios by assuming that large training data with fine-grained bounding box annotations for each class are available for model training. Such assumptions are often invalid in realistic logo detection scenarios where new logo classes come progressively and require to be detected with little or none budget for exhaustively labelling fine-grained training data for every new class. Existing benchmarks are thus unable to evaluate the true performance of a logo detection method in realistic and open deployments. In this work, we introduce a more realistic and challenging logo detection setting, called Open Logo Detection. Specifically, this new setting assumes fine-grained labelling only on a small proportion of logo classes whilst the remaining classes have no labelled training data to simulate the open deployment. We further create an open logo detection benchmark, called OpenLogo,to promote the investigation of this new challenge. OpenLogo contains 27,083 images from 352 logo classes, built by aggregating/refining 7 existing datasets and establishing an open logo detection evaluation protocol. To address this challenge, we propose a Context Adversarial Learning (CAL) approach to synthesising training data with coherent logo instance appearance against diverse background context for enabling more effective optimisation of contemporary deep learning detection models. Experiments show the performance advantage of CAL over existing state-of-the-art alternative methods on the more realistic and challenging OpenLogo benchmark.Comment: Accepted by BMVC 2018. The QMUL-OpenLogo benchmark is publicly available at: qmul-openlogo.github.i
    corecore