91,008 research outputs found

    Adversarial Discriminative Heterogeneous Face Recognition

    Full text link
    The gap between sensing patterns of different face modalities remains a challenging problem in heterogeneous face recognition (HFR). This paper proposes an adversarial discriminative feature learning framework to close the sensing gap via adversarial learning on both raw-pixel space and compact feature space. This framework integrates cross-spectral face hallucination and discriminative feature learning into an end-to-end adversarial network. In the pixel space, we make use of generative adversarial networks to perform cross-spectral face hallucination. An elaborate two-path model is introduced to alleviate the lack of paired images, which gives consideration to both global structures and local textures. In the feature space, an adversarial loss and a high-order variance discrepancy loss are employed to measure the global and local discrepancy between two heterogeneous distributions respectively. These two losses enhance domain-invariant feature learning and modality independent noise removing. Experimental results on three NIR-VIS databases show that our proposed approach outperforms state-of-the-art HFR methods, without requiring of complex network or large-scale training dataset

    Learning from Adversarial Features for Few-Shot Classification

    Full text link
    Many recent few-shot learning methods concentrate on designing novel model architectures. In this paper, we instead show that with a simple backbone convolutional network we can even surpass state-of-the-art classification accuracy. The essential part that contributes to this superior performance is an adversarial feature learning strategy that improves the generalization capability of our model. In this work, adversarial features are those features that can cause the classifier uncertain about its prediction. In order to generate adversarial features, we firstly locate adversarial regions based on the derivative of the entropy with respect to an averaging mask. Then we use the adversarial region attention to aggregate the feature maps to obtain the adversarial features. In this way, we can explore and exploit the entire spatial area of the feature maps to mine more diverse discriminative knowledge. We perform extensive model evaluations and analyses on miniImageNet and tieredImageNet datasets demonstrating the effectiveness of the proposed method

    Controllable Invariance through Adversarial Feature Learning

    Full text link
    Learning meaningful representations that maintain the content necessary for a particular task while filtering away detrimental variations is a problem of great interest in machine learning. In this paper, we tackle the problem of learning representations invariant to a specific factor or trait of data. The representation learning process is formulated as an adversarial minimax game. We analyze the optimal equilibrium of such a game and find that it amounts to maximizing the uncertainty of inferring the detrimental factor given the representation while maximizing the certainty of making task-specific predictions. On three benchmark tasks, namely fair and bias-free classification, language-independent generation, and lighting-independent image classification, we show that the proposed framework induces an invariant representation, and leads to better generalization evidenced by the improved performance.Comment: NIPS 201

    Feature Squeezing Mitigates and Detects Carlini/Wagner Adversarial Examples

    Full text link
    Feature squeezing is a recently-introduced framework for mitigating and detecting adversarial examples. In previous work, we showed that it is effective against several earlier methods for generating adversarial examples. In this short note, we report on recent results showing that simple feature squeezing techniques also make deep learning models significantly more robust against the Carlini/Wagner attacks, which are the best known adversarial methods discovered to date

    Pose-aware Adversarial Domain Adaptation for Personalized Facial Expression Recognition

    Full text link
    Current facial expression recognition methods fail to simultaneously cope with pose and subject variations. In this paper, we propose a novel unsupervised adversarial domain adaptation method which can alleviate both variations at the same time. Specially, our method consists of three learning strategies: adversarial domain adaptation learning, cross adversarial feature learning, and reconstruction learning. The first aims to learn pose- and expression-related feature representations in the source domain and adapt both feature distributions to that of the target domain by imposing adversarial learning. By using personalized adversarial domain adaptation, this learning strategy can alleviate subject variations and exploit information from the source domain to help learning in the target domain. The second serves to perform feature disentanglement between pose- and expression-related feature representations by impulsing pose-related feature representations expression-undistinguished and the expression-related feature representations pose-undistinguished. The last can further boost feature learning by applying face image reconstructions so that the learned expression-related feature representations are more pose- and identity-robust. Experimental results on four benchmark datasets demonstrate the effectiveness of the proposed method

    Towards Adversarial Configurations for Software Product Lines

    Full text link
    Ensuring that all supposedly valid configurations of a software product line (SPL) lead to well-formed and acceptable products is challenging since it is most of the time impractical to enumerate and test all individual products of an SPL. Machine learning classifiers have been recently used to predict the acceptability of products associated with unseen configurations. For some configurations, a tiny change in their feature values can make them pass from acceptable to non-acceptable regarding users' requirements and vice-versa. In this paper, we introduce the idea of leveraging these specific configurations and their positions in the feature space to improve the classifier and therefore the engineering of an SPL. Starting from a variability model, we propose to use Adversarial Machine Learning techniques to create new, adversarial configurations out of already known configurations by modifying their feature values. Using an industrial video generator we show how adversarial configurations can improve not only the classifier, but also the variability model, the variability implementation, and the testing oracle

    Multi-Level Generative Models for Partial Label Learning with Non-random Label Noise

    Full text link
    Partial label (PL) learning tackles the problem where each training instance is associated with a set of candidate labels that include both the true label and irrelevant noise labels. In this paper, we propose a novel multi-level generative model for partial label learning (MGPLL), which tackles the problem by learning both a label level adversarial generator and a feature level adversarial generator under a bi-directional mapping framework between the label vectors and the data samples. Specifically, MGPLL uses a conditional noise label generation network to model the non-random noise labels and perform label denoising, and uses a multi-class predictor to map the training instances to the denoised label vectors, while a conditional data feature generator is used to form an inverse mapping from the denoised label vectors to data samples. Both the noise label generator and the data feature generator are learned in an adversarial manner to match the observed candidate labels and data features respectively. Extensive experiments are conducted on synthesized and real-world partial label datasets. The proposed approach demonstrates the state-of-the-art performance for partial label learning

    FineFool: Fine Object Contour Attack via Attention

    Full text link
    Machine learning models have been shown vulnerable to adversarial attacks launched by adversarial examples which are carefully crafted by attacker to defeat classifiers. Deep learning models cannot escape the attack either. Most of adversarial attack methods are focused on success rate or perturbations size, while we are more interested in the relationship between adversarial perturbation and the image itself. In this paper, we put forward a novel adversarial attack based on contour, named FineFool. Finefool not only has better attack performance compared with other state-of-art white-box attacks in aspect of higher attack success rate and smaller perturbation, but also capable of visualization the optimal adversarial perturbation via attention on object contour. To the best of our knowledge, Finefool is for the first time combines the critical feature of the original clean image with the optimal perturbations in a visible manner. Inspired by the correlations between adversarial perturbations and object contour, slighter perturbations is produced via focusing on object contour features, which is more imperceptible and difficult to be defended, especially network add-on defense methods with the trade-off between perturbations filtering and contour feature loss. Compared with existing state-of-art attacks, extensive experiments are conducted to show that Finefool is capable of efficient attack against defensive deep models

    Adversarial Feature Sampling Learning for Efficient Visual Tracking

    Full text link
    The tracking-by-detection framework usually consist of two stages: drawing samples around the target object in the first stage and classifying each sample as the target object or background in the second stage. Current popular trackers based on tracking-by-detection framework typically draw samples in the raw image as the inputs of deep convolution networks in the first stage, which usually results in high computational burden and low running speed. In this paper, we propose a new visual tracking method using sampling deep convolutional features to address this problem. Only one cropped image around the target object is input into the designed deep convolution network and the samples is sampled on the feature maps of the network by spatial bilinear resampling. In addition, a generative adversarial network is integrated into our network framework to augment positive samples and improve the tracking performance. Extensive experiments on benchmark datasets demonstrate that the proposed method achieves a comparable performance to state-of-the-art trackers and accelerates tracking-by-detection trackers based on raw-image samples effectively

    One Bit Matters: Understanding Adversarial Examples as the Abuse of Redundancy

    Full text link
    Despite the great success achieved in machine learning (ML), adversarial examples have caused concerns with regards to its trustworthiness: A small perturbation of an input results in an arbitrary failure of an otherwise seemingly well-trained ML model. While studies are being conducted to discover the intrinsic properties of adversarial examples, such as their transferability and universality, there is insufficient theoretic analysis to help understand the phenomenon in a way that can influence the design process of ML experiments. In this paper, we deduce an information-theoretic model which explains adversarial attacks as the abuse of feature redundancies in ML algorithms. We prove that feature redundancy is a necessary condition for the existence of adversarial examples. Our model helps to explain some major questions raised in many anecdotal studies on adversarial examples. Our theory is backed up by empirical measurements of the information content of benign and adversarial examples on both image and text datasets. Our measurements show that typical adversarial examples introduce just enough redundancy to overflow the decision making of an ML model trained on corresponding benign examples. We conclude with actionable recommendations to improve the robustness of machine learners against adversarial examples
    • …
    corecore