2 research outputs found

    Adversarial Cross-Modal Retrieval via Learning and Transferring Single-Modal Similarities

    Full text link
    Cross-modal retrieval aims to retrieve relevant data across different modalities (e.g., texts vs. images). The common strategy is to apply element-wise constraints between manually labeled pair-wise items to guide the generators to learn the semantic relationships between the modalities, so that the similar items can be projected close to each other in the common representation subspace. However, such constraints often fail to preserve the semantic structure between unpaired but semantically similar items (e.g. the unpaired items with the same class label are more similar than items with different labels). To address the above problem, we propose a novel cross-modal similarity transferring (CMST) method to learn and preserve the semantic relationships between unpaired items in an unsupervised way. The key idea is to learn the quantitative similarities in single-modal representation subspace, and then transfer them to the common representation subspace to establish the semantic relationships between unpaired items across modalities. Experiments show that our method outperforms the state-of-the-art approaches both in the class-based and pair-based retrieval tasks

    Survey on Deep Multi-modal Data Analytics: Collaboration, Rivalry and Fusion

    Full text link
    With the development of web technology, multi-modal or multi-view data has surged as a major stream for big data, where each modal/view encodes individual property of data objects. Often, different modalities are complementary to each other. Such fact motivated a lot of research attention on fusing the multi-modal feature spaces to comprehensively characterize the data objects. Most of the existing state-of-the-art focused on how to fuse the energy or information from multi-modal spaces to deliver a superior performance over their counterparts with single modal. Recently, deep neural networks have exhibited as a powerful architecture to well capture the nonlinear distribution of high-dimensional multimedia data, so naturally does for multi-modal data. Substantial empirical studies are carried out to demonstrate its advantages that are benefited from deep multi-modal methods, which can essentially deepen the fusion from multi-modal deep feature spaces. In this paper, we provide a substantial overview of the existing state-of-the-arts on the filed of multi-modal data analytics from shallow to deep spaces. Throughout this survey, we further indicate that the critical components for this field go to collaboration, adversarial competition and fusion over multi-modal spaces. Finally, we share our viewpoints regarding some future directions on this field.Comment: Appearing at ACM TOMM, 26 page
    corecore