800 research outputs found

    Building Up Recommender Systems By Deep Learning For Cognitive Services

    Full text link
    Cognitive services provide artificial intelligence (AI) technology for application developers, who are not required to be experts on machine learning. Cognitive services are presented as an integrated service platform where end users bring abilities such as seeing, hearing, speaking, searching, user profiling, etc. to their own applications under development via simple API calls. As one of the above abilities, recommender systems serve as an indispensable building brick, especially when it comes to the information retrieval functionality in the cognitive service platform. This thesis focuses on the novel recommendation algorithms that are able to improve on recommendation quality measured by accuracy metrics, e.g., precision and recall, with advanced deep learning techniques. Recent deep learning-based recommendation models have been proved to have state-ofthe-art recommendation quality in a host of recommendation scenarios, such as rating prediction tasks, top-N ranking tasks, sequential recommendation, etc. Many of them only leverage the existing information acquired from users’ past behaviours to model them and make one or a set of predictions on the users’ next choice. Such information is normally sparse so that an accurate user behaviour model is often difficult to obtain even with deep learning. To overcome this issue, we invent various adversarial techniques and apply them to deep learning recommendation models in different scenarios. Some of these techniques involve generative models to address data sparsity and some improve user behaviour modelling by introducing an adversarial opponent in model training. We empirically show the effectiveness of our novel techniques and the enhancement achieved over existing models via thorough experiments and ablation studies on widely adopted recommendation datasets. The contributions in this thesis are as follows: 1. Propose the adversarial collaborative auto-encoder model for top-N recommendation; 2. Propose a novel deep domain adaptation cross-domain recommendation model for rating prediction tasks via transfer learning; 3. Propose a novel adversarial noise layer for convolutional neural networks and a convolutional generative adversarial model for top-N recommendation

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    TransNets: Learning to Transform for Recommendation

    Full text link
    Recently, deep learning methods have been shown to improve the performance of recommender systems over traditional methods, especially when review text is available. For example, a recent model, DeepCoNN, uses neural nets to learn one latent representation for the text of all reviews written by a target user, and a second latent representation for the text of all reviews for a target item, and then combines these latent representations to obtain state-of-the-art performance on recommendation tasks. We show that (unsurprisingly) much of the predictive value of review text comes from reviews of the target user for the target item. We then introduce a way in which this information can be used in recommendation, even when the target user's review for the target item is not available. Our model, called TransNets, extends the DeepCoNN model by introducing an additional latent layer representing the target user-target item pair. We then regularize this layer, at training time, to be similar to another latent representation of the target user's review of the target item. We show that TransNets and extensions of it improve substantially over the previous state-of-the-art.Comment: Accepted for publication in the 11th ACM Conference on Recommender Systems (RecSys 2017
    • …
    corecore