312 research outputs found

    Generative Adversarial Active Learning

    Full text link
    We propose a new active learning by query synthesis approach using Generative Adversarial Networks (GAN). Different from regular active learning, the resulting algorithm adaptively synthesizes training instances for querying to increase learning speed. We generate queries according to the uncertainty principle, but our idea can work with other active learning principles. We report results from various numerical experiments to demonstrate the effectiveness the proposed approach. In some settings, the proposed algorithm outperforms traditional pool-based approaches. To the best our knowledge, this is the first active learning work using GAN

    Variational Adversarial Active Learning

    Full text link
    Active learning aims to develop label-efficient algorithms by sampling the most representative queries to be labeled by an oracle. We describe a pool-based semi-supervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner. Unlike conventional active learning algorithms, our approach is task agnostic, i.e., it does not depend on the performance of the task for which we are trying to acquire labeled data. Our method learns a latent space using a variational autoencoder (VAE) and an adversarial network trained to discriminate between unlabeled and labeled data. The mini-max game between the VAE and the adversarial network is played such that while the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool, the adversarial network learns how to discriminate between dissimilarities in the latent space. We extensively evaluate our method on various image classification and semantic segmentation benchmark datasets and establish a new state of the art on CIFAR10/100\text{CIFAR10/100}, Caltech-256\text{Caltech-256}, ImageNet\text{ImageNet}, Cityscapes\text{Cityscapes}, and BDD100K\text{BDD100K}. Our results demonstrate that our adversarial approach learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method. Our code is available at https://github.com/sinhasam/vaal.Comment: First two authors contributed equally, listed alphabetically. Accepted as Oral at ICCV 201

    State-Relabeling Adversarial Active Learning

    Full text link
    Active learning is to design label-efficient algorithms by sampling the most representative samples to be labeled by an oracle. In this paper, we propose a state relabeling adversarial active learning model (SRAAL), that leverages both the annotation and the labeled/unlabeled state information for deriving the most informative unlabeled samples. The SRAAL consists of a representation generator and a state discriminator. The generator uses the complementary annotation information with traditional reconstruction information to generate the unified representation of samples, which embeds the semantic into the whole data representation. Then, we design an online uncertainty indicator in the discriminator, which endues unlabeled samples with different importance. As a result, we can select the most informative samples based on the discriminator's predicted state. We also design an algorithm to initialize the labeled pool, which makes subsequent sampling more efficient. The experiments conducted on various datasets show that our model outperforms the previous state-of-art active learning methods and our initially sampling algorithm achieves better performance.Comment: Accepted as Oral at CVPR 202

    Adversarial Learning: A Critical Review and Active Learning Study

    Full text link
    This papers consists of two parts. The first is a critical review of prior art on adversarial learning, identifying some significant limitations of previous works. The second part is an experimental study considering adversarial active learning and an investigation of the efficacy of a mixed sample selection strategy for combating an adversary who attempts to disrupt the classifier learning

    SEAL: Semi-supervised Adversarial Active Learning on Attributed Graphs

    Full text link
    Active learning (AL) on attributed graphs has received increasing attention with the prevalence of graph-structured data. Although AL has been widely studied for alleviating label sparsity issues with the conventional non-related data, how to make it effective over attributed graphs remains an open research question. Existing AL algorithms on graphs attempt to reuse the classic AL query strategies designed for non-related data. However, they suffer from two major limitations. First, different AL query strategies calculated in distinct scoring spaces are often naively combined to determine which nodes to be labelled. Second, the AL query engine and the learning of the classifier are treated as two separating processes, resulting in unsatisfactory performance. In this paper, we propose a SEmi-supervised Adversarial active Learning (SEAL) framework on attributed graphs, which fully leverages the representation power of deep neural networks and devises a novel AL query strategy in an adversarial way. Our framework learns two adversarial components: a graph embedding network that encodes both the unlabelled and labelled nodes into a latent space, expecting to trick the discriminator to regard all nodes as already labelled, and a semi-supervised discriminator network that distinguishes the unlabelled from the existing labelled nodes in the latent space. The divergence score, generated by the discriminator in a unified latent space, serves as the informativeness measure to actively select the most informative node to be labelled by an oracle. The two adversarial components form a closed loop to mutually and simultaneously reinforce each other towards enhancing the active learning performance. Extensive experiments on four real-world networks validate the effectiveness of the SEAL framework with superior performance improvements to state-of-the-art baselines

    Adversarial Active Learning for Deep Networks: a Margin Based Approach

    Full text link
    We propose a new active learning strategy designed for deep neural networks. The goal is to minimize the number of data annotation queried from an oracle during training. Previous active learning strategies scalable for deep networks were mostly based on uncertain sample selection. In this work, we focus on examples lying close to the decision boundary. Based on theoretical works on margin theory for active learning, we know that such examples may help to considerably decrease the number of annotations. While measuring the exact distance to the decision boundaries is intractable, we propose to rely on adversarial examples. We do not consider anymore them as a threat instead we exploit the information they provide on the distribution of the input space in order to approximate the distance to decision boundaries. We demonstrate empirically that adversarial active queries yield faster convergence of CNNs trained on MNIST, the Shoe-Bag and the Quick-Draw datasets

    Transformation Based Deep Anomaly Detection in Astronomical Images

    Full text link
    In this work, we propose several enhancements to a geometric transformation based model for anomaly detection in images (GeoTranform). The model assumes that the anomaly class is unknown and that only inlier samples are available for training. We introduce new filter based transformations useful for detecting anomalies in astronomical images, that highlight artifact properties to make them more easily distinguishable from real objects. In addition, we propose a transformation selection strategy that allows us to find indistinguishable pairs of transformations. This results in an improvement of the area under the Receiver Operating Characteristic curve (AUROC) and accuracy performance, as well as in a dimensionality reduction. The models were tested on astronomical images from the High Cadence Transient Survey (HiTS) and Zwicky Transient Facility (ZTF) datasets. The best models obtained an average AUROC of 99.20% for HiTS and 91.39% for ZTF. The improvement over the original GeoTransform algorithm and baseline methods such as One-Class Support Vector Machine, and deep learning based methods is significant both statistically and in practice.Comment: 8 pages, 6 figures, 4 tables. Accepted for publication in proceedings of the IEEE World Congress on Computational Intelligence (IEEE WCCI), Glasgow, UK, 19-24 July, 202

    Learning to Make Analogies by Contrasting Abstract Relational Structure

    Full text link
    Analogical reasoning has been a principal focus of various waves of AI research. Analogy is particularly challenging for machines because it requires relational structures to be represented such that they can be flexibly applied across diverse domains of experience. Here, we study how analogical reasoning can be induced in neural networks that learn to perceive and reason about raw visual data. We find that the critical factor for inducing such a capacity is not an elaborate architecture, but rather, careful attention to the choice of data and the manner in which it is presented to the model. The most robust capacity for analogical reasoning is induced when networks learn analogies by contrasting abstract relational structures in their input domains, a training method that uses only the input data to force models to learn about important abstract features. Using this technique we demonstrate capacities for complex, visual and symbolic analogy making and generalisation in even the simplest neural network architectures

    Dual Active Sampling on Batch-Incremental Active Learning

    Full text link
    Recently, Convolutional Neural Networks (CNNs) have shown unprecedented success in the field of computer vision, especially on challenging image classification tasks by relying on a universal approach, i.e., training a deep model on a massive dataset of supervised examples. While unlabeled data are often an abundant resource, collecting a large set of labeled data, on the other hand, are very expensive, which often require considerable human efforts. One way to ease out this is to effectively select and label highly informative instances from a pool of unlabeled data (i.e., active learning). This paper proposed a new method of batch-mode active learning, Dual Active Sampling(DAS), which is based on a simple assumption, if two deep neural networks (DNNs) of the same structure and trained on the same dataset give significantly different output for a given sample, then that particular sample should be picked for additional training. While other state of the art methods in this field usually require intensive computational power or relying on a complicated structure, DAS is simpler to implement and, managed to get improved results on Cifar-10 with preferable computational time compared to the core-set method.Comment: 6 page

    Knowledge Modelling and Active Learning in Manufacturing

    Full text link
    The increasing digitalization of the manufacturing domain requires adequate knowledge modeling to capture relevant information. Ontologies and Knowledge Graphs provide means to model and relate a wide range of concepts, problems, and configurations. Both can be used to generate new knowledge through deductive inference and identify missing knowledge. While digitalization increases the amount of data available, much data is not labeled and cannot be directly used to train supervised machine learning models. Active learning can be used to identify the most informative data instances for which to obtain users' feedback, reduce friction, and maximize knowledge acquisition. By combining semantic technologies and active learning, multiple use cases in the manufacturing domain can be addressed taking advantage of the available knowledge and data
    corecore